
Hanchen Ye1, Cong Hao2, Jianyi Cheng3, Hyunmin Jeong1, Jack Huang1,
Stephen Neuendorffer4, Deming Chen1

1University of Illinois at Urbana-Champaign, 2Georgia Institute of Technology,
3Imperial College London, 4Xilinx Inc.

ScaleHLS: A New Scalable High-Level Synthesis
Framework on Multi-Level Intermediate Representation

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● Future Directions

● Conclusion

● Reduce design complexity: Code density can be reduced by 7x - 8x moving from RTL to C/C++ [1]

● Improve design productivity: Get to working designs faster and reduce time-to-market [2]

● Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [3]

[1] P. Coussy, et al. High-Level Synthesis: from Algorithm to Digital Circuit. 2008. Springer.
[2] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.
[3] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.
[4] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators. 2010. ArXiv.
[5] M. Yu. Chimera: An Efficient Design Space Exploration Tool for FPGA High-level Synthesis. 2021. Master thesis.

High-level Synthesis (HLS) is wonderful!

Design HLS accelerator is challenging 👿

● Friendly to experts: Rely on the designers writing ‘good’
code to achieve high design quality [4]

● Large design space: Different combinations of applicable
optimizations for large-scale designs [3]

● Correlation of design factors: It is difficult for human to
discover the complicated correlations [5]

Students are requested to accelerate a CNN model using CPU, GPU, and FPGA. The
figure shows the percentage of students’ submissions (Y axis) in each performance
range (X axis). The performances are normalized with respect to 75% of expert
design’s performance [4].

Motivations
High-level

Description
(e.g. C/C++) Scheduling Allocation Binding

RTL Design
(e.g. Verilog)

High-level Synthesis (HLS)

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

How do we do HLS
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (cont.) - Directive Optimizations

Generate RTL with and etc.

Pipeline II is 5 and overall latency is 183,296

How do we do HLS
designs?

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Motivations (cont.) - Loop Optimizations

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

MatMul

Sample

CONV

Input

MatMul

IP

Input

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (cont.) - Graph Optimizations

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple

levels of abstractions

● Make the multi-level optimizations
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and
optimization flow

Solve problems at
the ‘correct’ level
AND automate it

Manual Code RewritingMatMul

Sample

CONV

Input

MatMul

IP

Input

Motivations (cont.) - Overall

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

Background: MLIR

Source: The Golden Age of Compiler Design in an Era of HW/SW Co-design by Chris Lattner

https://mlir.llvm.org

See more (e.g.):
2020 CGO Keynote Talk Slides
2021 CGO Paper

https://youtu.be/4HgShra-KnY
https://mlir.llvm.org
https://docs.google.com/presentation/d/11-VjSNNNJoRhPlLxFgvtb909it1WNdxTnQFipryfAPU/edit#slide=id.g7d334b12e5_0_4
https://ieeexplore.ieee.org/abstract/document/9370308

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

ScaleHLS Framework

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

%O = "onnx.Gemm"(%I, %W, %B) {...} :
(tensor<1x512xf32>, tensor<10x512xf32>, tensor<10xf32>)
-> tensor<1x10xf32>

Graph-level IR

affine.for %i = 0 to 1 {
 affine.for %j = 0 to 10 {

 affine.for %k = 0 to 512 {
 %1 = affine.load %I[%i, %k] : memref<1x512xf32>
 %2 = affine.load %W[%j, %k] : memref<10x512xf32>
 %3 = affine.load %O[%i, %j] : memref<1x10xf32>
 %4 = mulf %2, %3 : f32
 %5 = addf %4, %5 : f32
 affine.store %5, %O[%i, %j] : memref<1x10xf32>
} } }

Loop-level IR

affine.for %i = 0 to 1 {
 affine.for %j = 0 to 10 {

 affine.for %k = 0 to 512 {

 } {loop_directive = #hlscpp.ld<pipeline=1, ...>}
 } {loop_directive = #hlscpp.ld<pipeline=0, ...>}
} {loop_directive = #hlscpp.ld<pipeline=0, ...>}

Directive-level IR

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

ScaleHLS Framework (Cont.)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

ScaleHLS Framework (Cont.)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

[4]

ScaleHLS Framework (Cont.)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Optimizations

Coarse-grained
Pipelining

(dataflow pragma)

-legalize-dataflow
-split-function

-legalize-dataflow=”insert-copy=true”
-split-function

-legalize-dataflow=“insert-copy=true”
-split-function=“min-grain=2”

Enable a graph-level
throughput-area trade-off

ScaleHLS Optimizations (Cont.)

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

ScaleHLS Optimizations (Cont.)
Loop Order Permutation

● The minimum 𝐼𝐼 (Initiation Interval) of a loop pipeline can
be calculated as:

● 𝐷𝑒𝑙𝑎𝑦𝑑 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑 are the scheduling delay and
distance (calculated from the dependency vector) of
each loop-carried dependency 𝑑.

● To achieve a smaller 𝐼𝐼, the loop order permutation pass
performs affine analysis and attempt to permute loops
associated with loop-carried dependencies in order to
maximize the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

ScaleHLS Optimizations (Cont.)
Loop Pipelining

● Apply loop pipelining directives to a loop and set a
targeted initiation interval.

● In the IR of ScaleHLS, directives are represented using
the HLSCpp dialect. In the example, the pipelined %j
loop is represented as:

 affine.for %j = 0 to 32 {

 … …

 } attributes {loop_directive = #hlscpp.ld<pipeline=1,

 targetII=3, dataflow=0, flatten=0, … … >}

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

ScaleHLS Optimizations (Cont.)
Array Partition

● Array partition is one of the most important directives
because the memories requires enough bandwidth to
comply with the computation parallelism.

● The array partition pass analyzes the accessing pattern
of each array and automatically select suitable partition
fashion and factor.

● In the example, the %A array is accessed at address
[i,k] and [i,k+1] simultaneously after pipelined,
thus %A array is cyclically partitioned with two.

Simplify if ops;
Store ops forward;
Simplify memref ops

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

ScaleHLS Optimizations (Cont.)
Transform and Analysis Library

● Apart from the optimizations, ScaleHLS provides a QoR
estimator based on an ALAP scheduling algorithm. The
memory ports are considered as non-shareable
resources and constrained in the scheduling.

● The interfaces of all optimization passes and the QoR
estimator are packaged into a library, which can be
called by the DSE engine to generate and evaluate
design points.

Design Space Exploration - Observation

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

5. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

We have an ‘estimated’
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE Results of Computation Kernel

DSE results of PolyBench-C computation kernels
1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and

53,200 LUTs. The data types of all kernels are single-precision floating-points.

2. Among all six benchmarks, a speedup ranging from 41.7× to 768.1× is obtained compared to the baseline
design, which is the original computation kernel from PolyBench-C without the optimization of DSE.

3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.

4. In the Loop Order Optimization (Perm. Map), the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝 [𝑖],
where locations are from the outermost loop to inner.

Scalability study of computation kernels
1. The problem sizes of computation kernels are scaled from 32 to 4096 and the DSE engine is launched to

search for the optimal solutions under each problem size.

2. For BICG, GEMM, SYR2K, and SYRK benchmarks, the DSE engine can achieve stable speedup under all
problem sizes.

3. For GESUMMV and TRMM, the speedups are limited by the small problem sizes.

DSE Results of Computation Kernel (Cont.)

Optimization Results of DNN Models

Optimization results of representative DNN models
1. The target platform is one SLR (super logic region) of Xilinx VU9P FPGA which is a large FPGA containing

115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR.

2. The PyTorch implementations are parsed into ScaleHLS and optimized using the proposed multi-level
optimization methodology.

3. By combining the graph, loop, and directive levels of optimization, a speedup ranging from 1505.3× to 3825.0×
is obtained compared to the baseline designs, which are compiled from PyTorch to HLS C/C++ through
ScaleHLS but without the multi-level optimization applied.

Ablation study of DNN models
1. 𝐷, 𝐿{𝑛}, and 𝐺{𝑛} denote directive, loop, and graph optimizations, respectively. Larger 𝑛 indicates larger loop

unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

2. We can observe that the directive (𝐷), loop (𝐿7), and graph (𝐺7) optimizations contribute 1.8×, 130.9×, and 10.3
× average speedups on the three DNN benchmarks, respectively.

Optimization Results of DNN Models (Cont.)

Future Directions (1) - Design Space Exploration

ScaleHLS
Analysis Lib.

Initial
Sampling

Model
Training

Design
Proposal

Design
Gen.

ScaleHLS
Transform Lib.

Design
Eval.

ML-based DSE

● Use ScaleHLS & MLIR analysis library to extract
program information in order to initialize the
design space and propose new design points.

● Predict the performance and resource utilization
using machine learning model and train the
model with the evaluated design points.

● Use ScaleHLS transform library to generate the
proposed design.

Future Directions (2) - IP Integration

● Represent and integrate hardware IPs, such
as Vitis Accelerated Libraries [1], at the
graph level representation

● Parameterize hardware IPs with MLIR
attributes

● Generate new hardware IPs through the
ScaleHLS compilation flow

● Search optimized IP parameters in the global
design space exploration

IP Library

[1] Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries

https://github.com/Xilinx/Vitis_Libraries

Future Directions (3) - Design Specialization

🧐

🥰
🤔 ● Start with a basic design and add additional

features, specializations, and optimizations
step by step to approach the final design,
keeping human designers in the loop

● High-level functionality in MLIR can be
transformed and represented in lower-level
details to show its potential for optimizing
the whole design.

● Interaction can help designers to make
informed decisions at the system level.

Fuzzer

Future Directions (4) - Design Verification

● Generate random program with C/C++ fuzzer,
PyTorch fuzzer, etc.

● Verify the correctness of ScaleHLS conversions,
optimizations, and code generation

● Reduce the targeted program to locate the bugs

Fuzzer

Verifier

Verifying ScaleHLS

ScaleHLS

Generator

ScaleHLS

Controlled Fuzzing with ScaleHLS

● HLS fuzzing is an emerging research topic
investigating the verification of HLS tools

● We can cherry pick the transforms of ScaleHLS
to improve the pertinence and quality of fuzzing

Reducer

● Currently ScaleHLS leverages external
back-ends for generating the RTL code.

● A direct RTL code generation can keep
more information from the higher level
IR and exploit RTL-level optimizations
(CIRCT [1]) to further improve the QoR
of the accelerator designs.

● The directive-level IR in ScaleHLS can
be converted to hardware description
IRs in CIRCT and finally be emitted as
SystemVerilog designs.

[1] CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt/tree/main/

Future Directions (5) - Generate RTL within MLIR

Calyx FSM

HW Comb. Seq.

StaticLogic CIRCT

Verilog
Emitter Verilog

ScaleHLS

https://github.com/llvm/circt/tree/main/

Conclusion
● We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level

representation and optimization of HLS designs and supports a transform and analysis library
dedicated for HLS.

● ScaleHLS enables an end-to-end compilation pipeline by providing an HLS C front-end and a
synthesizable C/C++ emitter.

● An automated and extensible DSE engine is developed to search for optimal solutions in the
multi-dimensional design spaces.

● Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale
and sophisticated HLS designs and achieves significant performance and productivity
improvements on a set of benchmarks.

Github: https://github.com/hanchenye/scalehls

HPCA’22 Paper: https://arxiv.org/abs/2107.11673

https://github.com/hanchenye/scalehls
https://arxiv.org/abs/2107.11673

Acknowledgement

We thank Eric Cheng of Laboratory for Physical Sciences (LPS) and Samuel Bayliss of Xilinx for
insightful discussions. This work is supported in part by Xilinx Center of Excellence at UIUC, Xilinx
Adaptive Compute Cluster (XACC) initiative, and BAH HT 15-1158 contract.

Thanks! Q&A
Nov. 29, 2021

