ScaleHLS: A New Scalable High-Level Synthesis
Framework on Multi-Level Intermediate Representation

Hanchen Ye', Cong Hao?, Jianyi Cheng?®, Hyunmin Jeong’, Jack Huang",
Stephen Neuendorffer*, Deming Chen’

'University of lllinois at Urbana-Champaign, “Georgia Institute of Technology,
3Imperial College London, “Xilinx Inc.

XL iLLINGIS | Seqtefa) | Ioeim ©'o° | £ XILINX

Outline

e Motivations

e Background: MLIR

e ScaleHLS Framework

e ScaleHLS Optimizations
e Design Space Exploration
e Evaluation Results

e Future Directions

e Conclusion

Motivations

High-level Synthesis (HLS)

High-level
Description
(e.g. C/C++)

RTL Design
(e.g. Verilog)

Scheduling Allocation Binding

[High-level Synthesis (HLS) is wonderful!]

Reduce design complexity: Code density can be reduced by 7x - 8x moving from RTL to C/C++ [1]

[J
e Improve design productivity: Get to working designs faster and reduce time-to-market [2]
e Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [3]

[Design HLS accelerator is challenging &] 100.0% W cPU W GPU FPGA
e Friendly to experts: Rely on the designers writing ‘good’ 75.0%
code to achieve high design quality [4] 50.0%
. 25.0%
e Large design space: Different combinations of applicable n 7 I.
L . . 0.0%
optimizations for Iarge-scale deS|gns [3] Very Poor Poor Average Good Very Good Exellent
[0,0.2] (0.2,0.4] (0.406] (0.6,0.8] (0.8,1] (1,]

e Correlation of design factors: It is difficult for human to
Students are requested to accelerate a CNN model using CPU, GPU, and FPGA. The

discover the complicated correlations [5] figure shows the percentage of students’ submissions (Y axis) in each performance
range (X axis). The performances are normalized with respect to 75% of expert
design’s performance [4].

[1] P. Coussy, et al. High-Level Synthesis: from Algorithm to Digital Circuit. 2008. Springer.

[2] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.

[3] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.

[4] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators. 2010. ArXiv.
[5] M. Yu. Chimera: An Efficient Design Space Exploration Tool for FPGA High-level Synthesis. 2021. Master thesis.

designs?

Motivations (cont.) - Directive Optimizations [How do we do HLS }

for (int i = 0; i < 32; i++) {
) A

for (int j = 0; j < 32; j++
C[i][j] *= beta;
for (int k = 0; k < 32; k++) {
C[iI[j] += alpha * A[i][k] * B[kI[j];
PP}

Loop pipeline, unroll

Directive . R
Obtimizations Function pipeline, inline
P Array partition, etc.
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[i][j] *= beta;
for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
C[il[j] += alpha * A[il[k] * B[k][j];
b)) Generate RTL with : {('/LiNﬁS and etc.

Pipeline Il is 5 and overall latency is 183,296

Motivations (cont.) - Loop Optimizations

for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++)
C[i][j] *= beta;

{

for (int k = 0; k < 32; k++) {

C[iI[j] += alpha * A[i][k] * B[kI[j];
PP}
for (int k = 0; k < 32; k++) {
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
if (k == 0)
C[i][j] *= beta;
C[iI[j] += alpha * A[i][k] * B[k][j];
PP}
for (int k = 0; k < 32; k++) {
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
if (k == 0)
C[i][j] *= beta;
C[il[j] += alpha * A[i][k] * B[k][]];

Fr}

[How do we do HLS

designs? 1

Loop
Optimizations

Directive
Optimizations

Generate RTL with

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

W XILINX

. VITIS and etc.

Pipeline Il is 2 and overall latency is 65,552

designs?

Motivations (cont.) - Graph Optimizations [How do we do HLS }

Node fusion
Graph . .
e IP integration
Optimizations .
Sample Task-level pipeline, etc.
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[i][j] *= beta;
for (int k = 0; k < 32; k++) {
Clil[j] += alpha * A[i][k] * B[k][]];
P Loop interchange
Loop P . g'
Ootimizati Loop perfectization
for (int k = 0; k < 32; k++) { ptimizations Loop tile, skew, etc.

for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
if (k == @)
Cl[il[j] *= beta;
C[i][j] += alpha * A[i][k] * BI[k][j];
} o} inali
Directive Loop .plpell.ne,.unrcl)ll.

Function pipeline, inline

Optimizations Array partition, etc.

for (int k = 0; k < 32; k++) {
for (int i = 0; i < 32; i++)
for (int j = 0; j < 32; j++
#pragma HLS pipeline
if (k == 0)
CLil[j] *= beta; . v XILINX
Clil[j] += alpha * A[i][k] * B[K][j]; Generate RTL with & \/|T|5 and etc.

{
)

Fr}

Pipeline Il is 2 and overall latency is 65,552

Motivations (cont.) - Overal

Difficulties:
e | ow-productive and error-proning

e Hard to enable automated design
space exploration (DSE)

e NOT scalable!)X

Solve problems at @
the ‘correct’ level

AND automateit MLIR

Approaches of ScaleHLS:

e Represent HLS designs at multiple
levels of abstractions

e Make the multi-level optimizations
automated and parameterized

e Enable an automated DSE

e End-to-end high-level analysis and
optimization flow

for (int i = 0; i < 32; i++
for (int j = 0; j < 32; j
C[i][j] *= beta;
for (int k = 0; k < 32; k++)
C[i][j] += alpha * A[i][k]
P}

* BIkI[31;

for (int k = 0; k < 32; k++) {
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++)
if (k == 0)
C[i][j] *= beta;
C[i][j] += alpha * A[i][k]
P}

* BIkI[3];

for (int k = 0; k < 32; k++) {
for (int i = 0; i < 32; i++)
for (int j = 0; j < 32; j++
#pragma HLS pipeline
if (k == 0)
C[i][j] *= beta;
C[il[j] += alpha * A[i][k]
P

{
)

* Blk][i];

How do we do HLS
designs?

Node fusion
IP integration
Task-level pipeline, etc.

Graph
Optimizations

[Manual Code Rewriting]

Loop Loop interchange

e .. Loop perfectization
Optimizations Loop tile, skew, etc.

[Manual Code Rewriting]

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Directive
Optimizations

[Manual Code Rewriting]

W XILINX

Generate RTL with . VITIS and etc.

Pipeline Il is 2 and overall latency is 65,552

Background: MLIR

MLIR: Compiler Infra at the End of Moore’s Law

Multi-Level Intermediate Representation
Joined LLVM, follows open library-based philosophy

e <" Modular, extensible, general to many domains
o Being used for CPU, GPU, TPU, FPGA, HW, quantum,
e Easyto learn, great for research

e MLIR + LLVM IR + RISC-V CodeGen = 9%

https://mlir.llvm.org

See more (e.g.):
2020 CGO Keynote Talk Slides
2021 CGO Paper

Source: The Golden Age of Compiler Design in an Era of HW/SW Co-desian by Chris Lattner

https://youtu.be/4HgShra-KnY
https://mlir.llvm.org
https://docs.google.com/presentation/d/11-VjSNNNJoRhPlLxFgvtb909it1WNdxTnQFipryfAPU/edit#slide=id.g7d334b12e5_0_4
https://ieeexplore.ieee.org/abstract/document/9370308

ScaleHLS Framework

ONNX PyTorch

l Graph-level IR l
ONNX ATen
¢ Loop-level IR
Affine SCF
i Directive-level IR

Affine SCF HLSCpp
¢ Translate

¢ Lowering

ScaleHLS Dialect EXxisting Dialect

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir

[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://aithub.com/llvm/llvm-project/tree/main/mlir

[4] Vitis HLS Front-end: https://aithub.com/Xilinx/HLS

Represent It!
Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

%0 = "onnx.Gemm" (%I, %W, %B) {...} : Graph-level IR
(tensor<1x512xf32>, tensor<10x512xf32>, tensor<10xf32>)
-> tensor<1x10xf32>

affine.for %i = 0 to 1 { Loop-level IR
affine.for %j = @0 to 10 {

affine.for %k = 0 to 512 {
%1 = affine.load %I[%i, %k] : memref<1x512xf32>
%2 = affine.load %W[%j, %k] : memref<10x512xf32>
%3 = affine.load %0[%i, %j] : memref<1x10xf32>
%4 = mulf %2, %3 : f32
%5 = addf %4, %5 : f32
affine.store %5, %0[%i, %j] : memref<1x10xf32>

Pr}

affine.for %i = @ to 1 { Directive-level IR
affine.for %j = @ to 10 {

affine.for %k = 0 to 512 {
} {loop_directive = #hlscpp.ld<pipeline=1, ...>}

} {loop_directive = #hlscpp.ld<pipeline=0, ...>}
} {loop_directive = #hlscpp.ld<pipeline=0, ...>}

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Framework (Cont.)

ONNX PyTorch

l Graph-level IR l

Graph
Opt Passes

Loop
Opt Passes

Directive
Opt Passes

HLS QoR
Estimator

ONNX ATen —
¢ Loop-level IR
Affine SCF <>
i Directive-level IR
Affine SCF HLSCpp —
L]

ScaleHLS Tool

ScaleHLS Dialect

i Translate
¢ Lowering
<> Transform

Analysis

Existing Dialect

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://aithub.com/llvm/llvm-project/tree/main/mlir

[4] Vitis HLS Front-end: https://aithub.com/Xilinx/HLS

Represent It!
Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level.

QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Framework (Cont.)

ONNX

PyTorch

l Graph-level IR l

ONNX

ATen

¢ Loop-level IR

Affine

SCF

¢ Directive-level IR

Affine SCF

HLSCpp

ScaleHLS Tool

Transform
and Analysis
Library

A

Graph
Opt Passes

Loop

"| Opt Passes

_ Automated

DSE Engine

A

]

Directive

"| Opt Passes

HLS QoR
Estimator

ScaleHLS Dialect

i Translate
¢ Lowering
<> Transform

Analysis

EXxisting Dialect

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir

[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://aithub.com/llvm/llvm-project/tree/main/mlir

[4] Vitis HLS Front-end: https://aithub.com/Xilinx/HLS

Represent It!
Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level.

QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 3"

Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Framework (Cont.)

HLS C ONNX PyTorch | Tenem
and Analysis
Graph-level IR L0y
HLS C PN Graph
Front-end ONNX ATen B Opt Passes
¢ ¢ Loop-level IR
- Loop Automated
Aliine SCF "| Opt Passes = DSE Engine

¢ Directive-level IR

Directive
Opt Passes

'L i i Translate

Affine SCF HLSCpp

A

HLS C/C HLS QoR ¢ Lowering
++ 0
Emitter SESIEL. IR Estimator <> Transform
l l Analysis
[
HLS C/C++ LLVM IR [4] ScaleHLS Tool ScaleHLS Dialect Existing Dialect

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir

[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://aithub.com/llvm/llvm-project/tree/main/mlir

[4] Vitis HLS Front-end: https://aithub.com/Xilinx/HLS

Represent It!
Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level.

QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 3"

Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!
HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Optimizations

| Passes | Target | Parameters
F—y -legalize-dataflow function insert-copy Enable a graph-level
rap -split-function function | min-gran throughput-area trade-off
T T
Stage 0 Stage 0 Stage 0
Stage1 Stage 1 -~
|Proc1 ‘ | Copy ‘ ‘Proc1 | ‘ Copy ‘
‘ } S-t-age 2 l] l) S-tage 4 1 ’
7 Pipelining A] i ’

S-t-age 3
v (dataflow pragma) v

Stage 2 Stage 4 Stage 2
Y
[Procs
interval = 5t interval = 3t interval = 1t interval = 2t
(a) (b) (c) (d)
-legalize-dataflow -legalize-dataflow="insert-copy=true” -legalize-dataflow="insert-copy=true”

-split-function -split-function -split-function="“min-grain=2"

ScaleHLS Optimizations (Cont.)

| Passes | Target | Parameters
Graph -legfllize-da.taﬂow funct%on in.sert—copy
-split-function function | min-gran
-affine-loop-perfectization | loop band | -
-affine-loop-order-opt loop band | perm-map
Loop | -remove-variable-bound loop band | -
-affine-loop-tile loop tile-size
-affine-loop-unroll loop unroll-factor
-loop-pipelining loop target-ii
Direct. | -func-pipelining function target-ii
-array-partition function part-factors
-simplify-affine-if function -
. -affine-store-forward function | -
Misc. . . ;
-simplify-memref-access function -
-canonicalize -cse function -

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {

for (int i = 0; i < 32; i++) {
for (int j = 0; j <= 1; j++) {
Cl[i][j] *= beta;

Loop and
Directive

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl

#pragma HLS interface s_axilite port=beta bundle=ctrl

#pragma HLS interface bram port=C

#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

for (int k = 0; k < 32; k += 2) {
for (int i = 0; i <32; i +=1) {
for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
if ((1-3) >=0) {
int v7 = Cc[i][j];
int v8 = beta * v7;

int v9 = A[i][k];
int v10 = A[j][k];
int v11 = (k == 8) ? v8 : Vv7;

int v12 = alpha * v9;
int v13 = v12 * v10;

int v14 = v11 + v13;

int v15 = A[i][(k + 1)];
int v16 = A[j][(k + 1)];
int v17 = alpha * v15;
int v18 = v17 * v16;

int v19 = v14 + v18;

Optimized C

Opt in MLIR

—

for (int k = 0; k < 32; k++) {
C[il1[j] += alpha * A[i][k] * A[j][k];

}r o) Baseline C

PP}

Clillj] = v19;

}

emitted by the
C/C++ emitter

ScaleHLS Optimizations (Cont.)

Loop Order Permutation

e The minimum /I (Initiation Interval) of a loop pipeline can

be calculated as:

B Delay,
Fimin = mém ({Distanced—D
® Delay, and Distance are the scheduling delay and

distance (calculated from the dependency vector) of
each loop-carried dependency d.

e To achieve a smaller 11, the loop order permutation pass

performs affine analysis and attempt to permute loops
associated with loop-carried dependencies in order to
maximize the Distance.

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {

for (int i = 0; 1 < 32; i++) { LOOp and
for (int j = 0; j <= 1; j++) { L . .
clil[j] *= beta; Loop perfectization Directive

for (int k = 0; k < 32; k++) {

Opt in MLIR
C[il[j] += alpha * A[i][k] * A[j][k];
YY) Baseline C I:>

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl

#pragma HLS interface bram port=C

#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

for (int k = 0; k < 32; k += 2) { <<:[Loop order permutation; Loop unroll]
for (int i = 0; i <32; i +=1) { T
for (int j = 0; j < 32; j += 1) { <<:[Remove variable loop bound]

#pragma HLS pipeline II = 3
if ((1-3) >=0) {

int v7 = Cc[i][j];

int v8 = beta * v7;

int v9 = A[i][k];

int v10 = A[j][k];

int v11 = (k == 8) ? v8 : Vv7;

int v12 = alpha * v9;

int v13 = v12 * v10;

int v14 = v11 + v13;

int v15 = A[i][(k + 1)];

int v16 = A[j][(k + 1)];

int v17 = alpha * v15;

int v18 = v17 * v16; Optimized C

int v19 = v14 + v18; .

clillj] = v19; emitted by the
PP C/C++ emitter

ScaleHLS Optimizations (Cont.)

Loop Pipelining

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl

: F . R #pragma HLS interface s_axilite port=alpha bundle=ctrl
° Apply IOOp plpe“nlng directives to a |00p and set a #pragma HLS interface s_axilite port=beta bundle=ctrl

targeted initiation interval. #pragma HLS interface bram port=C
#pragma HLS interface bram port=A

e [nthe IR of ScaleHLS, directives are represented USing #pragma HLS resource variable=C core=ram_s2p_bram
. . . o) =
the HLSCpp dlaleCt' In the example, the plpe“ned /°J #pragma HLS array_partition variable=A cyclic factor=2 dim=2
|OOp iS represented as: #pragma HLS resource variable=A core=ram_s2p_bram
for (int k = 0; k < 32; k += 2) {4 Loop order permutation; Loop unroll]
affine.for %3 = 0 to 32 { for (int i = 0; i <32; i += 1) { T
for (int j = 0; j < 32; j += 1) { Remove variable loop bound]
...... #pragma HLS pipeline II = 3
} attributes {loop directive = #hlscpp.ld<pipeline=1l, if ((i - j) >= 0) {
— _ _ int v7 = C[il[j];
targetII=3, dataflow=0, flatten=0, >} int ve = beta * v7:
int v9 = A[i][k];
int v10 = A[j][k];
int v11 = (k == 8) ? v8 : Vv7;
int v12 = alpha * v9;
int v13 = v12 * v10;
int v14 = v11 + v13;
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) { int v15 = A[i][(k + D];
for (int i = 0; i < 32; i++) { Loop and int v16 = ALGTI(k + 1)];
for (int j = 0; j <= i; j++) 2 .] . . }nt v17 = alpha * v15;
CLill§] *= beta: Loop perfectization D|r.ect|ve }nt v18 = v17 * v16; Optimized c
for (int k = 8; k < 32; k++) { Opt in MLIR 1“'? V1.9 = v14 + v18; .
Cli][j] += alpha * A[i][k] * A[j1[k]: clillj] = v19; emitted bY_ the
Yoy Baseline C I:> Fry C/C++ emitter

ScaleHLS Optimizations (Cont.)

Array Partltlon void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {

#pragma HLS interface s_axilite port=return bundle=ctrl

e . . : : #pragma HLS interface s_axilite port=alpha bundle=ctrl
e Array partition is one of the most important directives #pragma HLS interface s axilite portsbeta bundlesctrl

because the memories requires enough bandwidth to #pragma HLS interface bram port=C
. i . #pragma HLS interface bram port=A
comply with the computation parallelism.

#pragma HLS resource variable=C core=ram_s2p_bram Array partition

L The array partition paSS analyzes the aCCGSSing pattern #pragma HLS array_partition variable=A cyclic factor=2 dim=2
of each array and automatically select suitable partition #pragma HLS resource variable=A core=ram_s2p_bram
fashion and factor. for (int k = 0; k < 32; k += 2) {4 Loop order permutation; Loop unroll]
for (int i = 0; i <32; i +=1) { T
. for (int j = 0; j <32; j += 1) {4 Remove variable loop bound]
e |n the example, the %A array is accessed at address #pragma HLS pipeline II = 3
[i,k] and [1i, k+1] simultaneously after pipelined, int v 2131
thus %A array is cyclically partitioned with two. int v8 = beta * v7;
int v9 = A[i][k];
int v10 = A[j][k];
int v11 = (k == 8) ? v8 : Vv7;
int v12 = alpha * v9;
int v13 = v12 * v10;
int v14 = v11 + v13; Simplify if ops;
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) { int v15 = Alill(k + 1)]; Store,ops fornard.
for (int i = 0; i < 32; i++) { Loop and int v16 = A[j1[(k + 1)]; Simplify memref ops
for (int j = 8; j <= i; j++) { . . . :ﬁ.nt v17 = alpha * v15;
CLill§] *= beta: 4 Loop perfectization] ODIrec:\;IV(iR }nt v18 = v17 * v16; Optimized c
for (int k = 8; k < 32; k++) { ptin ML 1“'? V1.9 = V14 + v18; .
Cli][j] += alpha * A[i][K] * A[31[K]: clillj] = v19; emitted by the
Yoy Baseline C I:> Fry C/C++ emitter

ScaleHLS Optimizations (Cont.)

TranSform and AnaIySIs lerary void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {

#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl

e Apart from the Optlmlzat|0ns, ScaleHLS prOVIdeS a QOR #pragma HLS interface s_axilite port=beta bundle=ctrl

estimator based on an ALAP scheduling algorithm. The #pragma HLS interface bram port=C
. #pragma HLS interface bram port=A
memory ports are considered as non-shareable
resources and constrained in the scheduling. foragna HLS resource variablesC coresran-sp-bran] amay Pa"“‘°D
#pragma HLS array_partition variable=A cyclic factor=2 dim=2
e The interfaces of all optimization passes and the QoR #pragna HLS resource variablesa corezram-s2p_bram
estimator are packaged into a library, which can be for (int k = 0; k < 32; k += 2) {{ Loop order permutation; Loop unroll]
i for (int i = 0; i <32; i +=1) { I
called by the DSE engine to generate and evaluate for (int j = 0; j < 32; j += 1) {{ Remove variable loop bound]
. . #pragma HLS pipeline II = 3
deS|gn pomts. if ((i - §) >= 0) {
Transform int v7 = C[i][j];
and Analvsis int v8 = beta * v7;
int v9 = A[i][k];
Transform HLS QoR . _ . .
Passes ':D:‘ Estimator Z_Lnt v10 = A[j][k];
int v11 = (k == 8) ? v8 : Vv7;
int v12 = alpha * v9;
int v13 = v12 * v10;
int v14 = v11 + v13; Simplify if ops;
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) { int v15 = A[i][(k + 1)]; Store ops forward;
. . . X ; - ; . Simplify memref ops
f ti=0;i<32; itt L n int v16 = A[j][(k + 1)];
01201(’1r(]ini j = 0% j <= i? j1+§ 2 - —] DOOpta d int v17 = alpha * vi5;
N ! ! oop perfectization Irective i = * . P
Clil[j] *= beta; int v18 = v17 * v16; Optimized C
for (int k = 0; k < 32; k++) { Opt in MLIR nt vi9 = vid + vig; emitted by the
Clil[j] += alpha * A[i][k] * A[j][k]; CIA13T = va9; y
Y} Baseline C I:> Yy C/C++ emitter

Design Space Exploration - Observation

10% 4

DSP Utilization

-
i

10! 4

Latency-Area Profiling

-
=)
w

non-pareto
e pareto

102 10° 10°
Clock Cycles

Pareto frontier of a GEMM kernel
e Latency and area are profiled for each design point

e Dark blue points are Pareto points

e Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

40

20

-60
-40 =20 [20 40 60 80
Principal Component 0

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Design Space Exploration (Cont.)

DSE algorithm:

1. Sample the whole design space and evaluate each
sampled design point with the QoR estimator

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

40

/ Sample the design space

esiiiiiiiii{;}muuiiii .:szzs --------

O Non-Pareto point
© Pareto point
© Point to be evaluated

-60
-40 =20 [20 40 60 80
Principal Component 0

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Design Space Exploration (Cont.)

DSE algorithm:

1. Sample the whole design space and evaluate each
sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

40

/ Evaluate and find Pareto

e

O Non-Pareto point
© Pareto point
© Point to be evaluated

-60

frontier

-40 =20 [20 40 60
Principal Component 0

80

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two

dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Design Space Exploration (Cont.)

DSE algorithm:

1. Sample the whole design space and evaluate each
sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

Randomly pick one Pareto point

40

Evaluate its closest neighbor

20

A

O Non-Pareto point
© Pareto point
© Point to be evaluated

-60
-40 -20 0 20 40 60 80

Principal Component 0

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Design Space Exploration (Cont.)

DSE algorithm:

1. Sample the whole design space and evaluate each
sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

40

A new Pareto point, add it

20

;“!OgOuucunn

An old one is dominated, remove it

O Non-Pareto point
© Pareto point
© Point to be evaluated

-60
-40 -20 0 20 40 60 80

Principal Component 0

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Design Space Exploration (Cont.)

DSE algorithm:

. Sample the whole design space and evaluate each
sampled design point with the QoR estimator

. Extract the Pareto frontier from all evaluated design
points

. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

. Repeat step (2) and (3) to update the discovered
Pareto frontier

. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

Principal Component 1

Design Space PCA

60

non-pareto
e pareto

a0 We have an ‘estimated’
Pareto frontier in the end

20

;tsiiiiiiiiiEuuminm:nﬁ?'

MY,

O Non-Pareto point
© Pareto point
© Point to be evaluated

-60
-40 =20 [20 40 60 80
Principal Component 0

e Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

e Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

DSE Results of Computation Kernel

Kernel | Prob. Size | Speedup | LP | RVB | Perm. Map | Tiling Sizes | Pipeline II | Array Partition
BICG 4096 41.7x | No | No [1. 0] [16. 8] 43 A:[8, 16), 5:[16], g:([8]., p:[16], r:[8]
GEMM 4096 768.1x | Yes | No 1,2, 0] (8. 1, 16] 3 C:[1, 16], A:[1, 8], B:[8, 16]
GESUMMV | 409 199.1x | Yes | No [1. 0] (8, 16] A:[16, 8], B:[16, 8], tmp:[16], x:[8], y:[16]
SYR2K 4096 384.0x | Yes | Yes [1,2,0] (8. 4. 4] 8 C:[4, 4], A:[4, 8], B:[4, 8]
SYRK 4096 384.1x | Yes | Yes (1, 2, 0] (64, 1,1] 3 C:[1, 1], A:[1, 64]
TRMM 4096 590.9x | Yes | Yes (1,2, 0] [4.4,32] 13 A:[4, 4], B:[4, 32]

DSE results of PolyBench-C computation kernels

1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and

53,200 LUTs. The data types of all kernels are single-precision floating-points.

2. Among all six benchmarks, a speedup ranging from 41.7x to 768.1x is obtained compared to the baseline
design, which is the original computation kernel from PolyBench-C without the optimization of DSE.

3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.

4. In the Loop Order Optimization (Perm. Map), the i-th loop in the loop nest is permuted to location PermMap [i],

where locations are from the outermost loop to inner.

DSE Results of Computation Kernel (Cont.)

32
768.1
1000 608.2x * 590.9x 64

2 359.4 384.0x 407.1x 384.1x
S 500 = 128
3 199.1x
@ 256
5 87.0x
3 100 52.7% | 512
a 41.7x
é 50 317X B 1024
2 B 2048
w

i B 4096

BICG GEMM GESUMMV SYR2K SYRK TRMM Problem Size

Scalability study of computation kernels

1. The problem sizes of computation kernels are scaled from 32 to 4096 and the DSE engine is launched to
search for the optimal solutions under each problem size.

2. For BICG, GEMM, SYR2K, and SYRK benchmarks, the DSE engine can achieve stable speedup under all
problem sizes.

3. For GESUMMYV and TRMM, the speedups are limited by the small problem sizes.

Optimization Results of DNN Models

Model Speed Runtime Memory DSP LUT FF Our DSP Eff. DSP Effi. of
oee PECCUP | (seconds) | (SLRUtL %) | (SLRUtL %) | (SLRUtL %) | (SLR Util. %) | (OPs/Cycle/DSP) | TVM-VTA [26]
ResNet-18 | 3825.0x 60.8 91.7Mb (79.5%) | 1326 (58.2%) | 157902 (40.1%) | 54766 (6.9%) 1.343 0.344
VGG-16 | 1505.3x 37.3 46.7Mb (40.5%) | 878 (38.5%) | 88108 (22.4%) | 31358 (4.0%) 0.744 0.296
MobileNet | 1509.0x 38.1 79.4Mb (68.9%) | 1774 (77.8%) | 138060 (35.0%) | 56680 (7.2%) 0.791 0.468

Optimization results of representative DNN models

1. The target platform is one SLR (super logic region) of Xilinx VU9P FPGA which is a large FPGA containing
115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR.

2. The PyTorch implementations are parsed into ScaleHLS and optimized using the proposed multi-level
optimization methodology.

3. By combining the graph, loop, and directive levels of optimization, a speedup ranging from 1505.3% to 3825.0x%
is obtained compared to the baseline designs, which are compiled from PyTorch to HLS C/C++ through
ScaleHLS but without the multi-level optimization applied.

Optimization Results of DNN Models (Cont.)

B Mem (%) M DSP(%) M LUT(%) @ Speedup overBaseline B Mem (%) M DSP(%) M LUT(%) @ Speedup overBaseline B Mem (%) M DSP(%) M LUT(%) @ Speedup overBaseline

100 10000 | 100 , 10000 | 100 10000
825.0x 1505.3x: 1509.0
- 859.4x 742 .7x
75 1000 75 293.8x 1000 75 1000
134.5x4
50 100 50 100 50 100
25 10 25 10 25 10
1.0x
0 1 0 1 o Llas Lh 1
: € O 0 0000 0 0.0
&£ N e S S
& & <& e & & F P L S
100 | 10000 10000
1505.3
75 1000 1000
50 23:5x 100 100
11.8x
25 73% 10 10
0 1 1

(a) ResNet-18 (b) VGG-16 (c) MobileNet
Ablation study of DNN models

1. D, L{n}, and G{n} denote directive, loop, and graph optimizations, respectively. Larger n indicates larger loop
unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

2. We can observe that the directive (D), loop (L7), and graph (G7) optimizations contribute 1.8%, 130.9%, and 10.3
x average speedups on the three DNN benchmarks, respectively.

Future Directions (1) - Design Space Exploration

Initial
Sampling) ML-based DSE
[Model | e Use ScaleHLS & MLIR analysis library to extract
Training program information in order to initialize the
;—) . . .
design space and propose new design points.
[ScaleHLS Design e Predict the performance and resource utilization
Analysis Lib. Proposal
N using machine learning model and train the

model with the evaluated design points.

)
ScaleHLS Design
Transform Lib. Gen. e Use ScaleHLS transform library to generate the

proposed design.

Future Directions (2) - IP Integration

HLSC | | ONNX | | Pyfoch | e Represent and integrate hardware IPs, such
v l Graph-level IR l as Vitis Accelerated Libraries [1], at the
th? ec;d Conx | [Aten | graph level representation
I | Loop-level IR e Parameterize hardware |IPs with MLIR
| Affine | | SCE I attributes

¥ Directive-level IR e Generate new hardware IPs through the

ScaleHLS compilation flow

| Affine | | SCF | ’ HESCRP |
) v
Y emiter

,, |

. |Hscicr | [MR

e Search optimized IP parameters in the global
design space exploration

[1] Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries

https://github.com/Xilinx/Vitis_Libraries

Future Directions (3) - Design Specialization

; . Zj e Start with a basic design and add additional
HLSC | | ONNX | | PyToch | features, specializations, and optimizations
step by step to approach the final design,

v l Graph-level IR l

HLS C keeping human designers in the loop
Front-end | ONNX | | ATen | "
) | Loop-evel IR e High-level functionality in MLIR can be

| . oA transformed and represented in lower-level
affine | | scF | beeeeeee- . @ _ . _ e
= details to show its potential for optimizing

Directive-level IR [
i irective-leve the whole deslgn.

| Affine | | sCcF | | HLsCpp |
l v
Y emiter

e Interaction can help designers to make
informed decisions at the system level.

HLsg/c++] | LVMIR |

Future Directions (4) - Design Verification

Verifier

Fuzzer

Generator
__

~

ScaleHLS
_

)

)

4

Verifying ScaleHLS

Generate random program with C/C++ fuzzer,
PyTorch fuzzer, etc.

Verify the correctness of ScaleHLS conversions,
optimizations, and code generation

Reduce the targeted program to locate the bugs

Controlled Fuzzing with ScaleHLS

HLS fuzzing is an emerging research topic
investigating the verification of HLS tools

We can cherry pick the transforms of ScaleHLS
to improve the pertinence and quality of fuzzing

Future Directions (5) - Generate RTL within MLIR

.| HLSC | | ONNX | | PyTorch |
I} l Graph-level IR l
o ||| owx | [aen || ScaleHLS
I \ Loop-level IR
| Affine | | SCF |
| Directive-level IR
| Affine | | SCF | | HLSCpp |

Calyx FSM | StaticLogic CIRCT
_____________________ P
HW Comb. Seq.]—» \E’emrl':fegr

Verilog

Currently ScaleHLS leverages external
back-ends for generating the RTL code.

A direct RTL code generation can keep
more information from the higher level
IR and exploit RTL-level optimizations
(CIRCT [1]) to further improve the QoR
of the accelerator designs.

The directive-level IR in ScaleHLS can
be converted to hardware description
IRs in CIRCT and finally be emitted as
SystemVerilog designs.

[1] CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt/tree/main/

https://github.com/llvm/circt/tree/main/

Conclusion

e We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level
representation and optimization of HLS designs and supports a transform and analysis library
dedicated for HLS.

e ScaleHLS enables an end-to-end compilation pipeline by providing an HLS C front-end and a
synthesizable C/C++ emitter.

e An automated and extensible DSE engine is developed to search for optimal solutions in the
multi-dimensional design spaces.

e Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale
and sophisticated HLS designs and achieves significant performance and productivity
improvements on a set of benchmarks.

Github: https://github.com/hanchenye/scalehls

HPCA'22 Paper: https://arxiv.org/abs/2107.11673

https://github.com/hanchenye/scalehls
https://arxiv.org/abs/2107.11673

Acknowledgement

We thank Eric Cheng of Laboratory for Physical Sciences (LPS) and Samuel Bayliss of Xilinx for
insightful discussions. This work is supported in part by Xilinx Center of Excellence at UIUC, Xilinx
Adaptive Compute Cluster (XACC) initiative, and BAH HT 15-1158 contract.

& XILINX LPS s stences

| UNIVERSITY PROGRAM

Thanks! Q&A

Nov. 29, 2021

