
ScaleHLS: Scalable High-Level
Synthesis through MLIR

Hanchen Ye1, Cong Hao2, Jianyi Cheng3, Hyunmin Jeong1, Jack Huang1,
Stephen Neuendorffer4, Deming Chen1

1University of Illinois at Urbana-Champaign, 2Georgia Institute of Technology,
3Imperial College London, 4Xilinx Inc.

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● Conclusion

● Reduce design complexity: Code density can be reduced by 7X - 8X moving from RTL to C/C++ [1]

● Improve design productivity: Get to working designs faster and reduce time-to-market [2]

● Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [3]

[1] P. Coussy, et al. High-Level Synthesis: from Algorithm to Digital Circuit. 2008. Springer.
[2] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.
[3] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.
[4] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators. 2010. ArXiv.
[5] M. Yu. Chimera: An Efficient Design Space Exploration Tool for FPGA High-level Synthesis. 2021. Master thesis.

High-level Synthesis (HLS) is wonderful!

Design HLS accelerator is challenging 👿

● Friendly to experts: Rely on the designers writing ‘good’
code to achieve high design quality [4]

● Large design space: Different combinations of applicable
optimizations for large-scale designs [3]

● Correlation of design factors: It is difficult for human to
discover the complicated correlations [5]

Students are requested to accelerate a CNN model using CPU, GPU, and FPGA. The
figure shows the percentage of students’ submissions in each performance range. The
performances are normalized with respect to 75% of expert design’s performance [4].

Motivations (1)
High-level

Description
(e.g. C/C++) Scheduling Allocation Binding

RTL Design
(e.g. Verilog)

High-level Synthesis (HLS)

Motivations (2)

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
 C[i][j] += alpha * A[i][k] * B[k][j];
} } } Generate RTL with , , etc.

How do we do HLS
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Generate RTL with , , etc.

How do we do HLS
designs?

Motivations (3)

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with , , etc.

How do we do HLS
designs?

MatMul

Sample

CONV

Input

MatMul

IP

Input

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (4)

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with , , etc.

How do we do HLS
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple

levels of abstractions

● Make the multi-level optimizations
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and
optimization flow

Solve problems at
the ‘correct’ level
AND automate it

Manual Code RewritingMatMul

Sample

CONV

Input

MatMul

IP

Input

Motivations (5)

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Background: MLIR

Source: The Golden Age of Compiler Design in an Era of HW/SW Co-design by Chris Lattner

https://youtu.be/4HgShra-KnY

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

ScaleHLS Framework (1)

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

%O = "onnx.Gemm"(%I, %W, %B) {...} :
(tensor<1x512xf32>, tensor<10x512xf32>, tensor<10xf32>)
-> tensor<1x10xf32>

Graph-level IR

affine.for %i = 0 to 1 {
 affine.for %j = 0 to 10 {

 affine.for %k = 0 to 512 {
 %1 = affine.load %I[%i, %k] : memref<1x512xf32>
 %2 = affine.load %W[%j, %k] : memref<10x512xf32>
 %3 = affine.load %O[%i, %j] : memref<1x10xf32>
 %4 = mulf %2, %3 : f32
 %5 = addf %4, %5 : f32
 affine.store %5, %O[%i, %j] : memref<1x10xf32>
} } }

Loop-level IR

affine.for %i = 0 to 1 {
 affine.for %j = 0 to 10 {

 affine.for %k = 0 to 512 {

 } {loop_directive = #hlscpp.ld<pipeline=1, ...>}
 } {loop_directive = #hlscpp.ld<pipeline=0, ...>}
} {loop_directive = #hlscpp.ld<pipeline=0, ...>}

Directive-level IR

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

ScaleHLS Framework (2)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

ScaleHLS Framework (3)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control
flow) [3] dialect. Can leverage the transformation and
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

ScaleHLS Framework (4)

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

[4]

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS

ScaleHLS Optimizations (1)

Coarse-grained
Pipelining

(dataflow pragma)

-legalize-dataflow
-split-function

-legalize-dataflow=”insert-copy=true”
-split-function

-legalize-dataflow=“insert-copy=true”
-split-function=“min-grain=2”

Enable a graph-level
throughput-area trade-off

ScaleHLS Optimizations (2)

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

Each parameter of an
optimization is a

tunable knob in DSE

Design Space Exploration (1)

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Pareto frontier of a GEMM kernel

Design Space Exploration (2)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (3)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier

Design Space Exploration (4)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a random selected
design point in the current Pareto frontier

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (5)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a random selected
design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (6)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a random selected
design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

5. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

● Each parameter of a transform pass is one dimension,
the multi-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

We have an ‘estimated’
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated

DSE Results of Computation Kernel

Speedup is with respect to the baseline designs only optimized by Xilinx Vivado HLS. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.
In the Loop Order Optimization,the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝[𝑖], where locations are from the outermost loop to inner.

Optimization Results of DNN Models

Speedup is over the baseline design only optimized by Vivado HLS.

𝐷, 𝐿{𝑛}, and 𝐺{𝑛} denote directive, loop, and graph optimizations, respectively. Larger 𝑛 indicates stronger optimizations are applied.

Conclusion
● We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level

representation and optimization of HLS designs and supports a transform and analysis library
dedicated for HLS.

● ScaleHLS enables an end-to-end compilation pipeline by providing an HLS C front-end and a
synthesizable C/C++ emitter.

● An automated and extensible DSE engine is developed to search for optimal solutions in the
multi-dimensional design spaces.

● Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale
and sophisticated HLS designs and achieves significant performance and productivity
improvements on a set of benchmarks.

Future Directions
● IP Integration. The graph-level representation of ScaleHLS enables the ability to integrate

existing HLS IPs, such as Vitis Accelerated Libraries [1], into the compilation flow. Meanwhile,
new IPs can be generated through launching the DSE engine of ScaleHLS.

● DSE algorithms. The parameterized interfaces provided by the analysis and transform libraries
of ScaleHLS enable a large opportunity to investigate the optimization algorithms for the
multi-dimensional DSE problem of HLS.

● Machine-learning based QoR estimation. Machine-learning methods can potentially capture
more features from the hierarchical IR of ScaleHLS, thereby generating better estimation results
than the analytical model-based methods.

● Generate RTL code within MLIR. Currently ScaleHLS leverages external back-ends for
generating the RTL code. However, a direct RTL code generation can keep more information
from the higher level IR and exploit the RTL-level representation and optimization (CIRCT [2]) to
further improve the quality of the accelerator designs.

[1] Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries
[2] CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt/tree/main/

https://github.com/Xilinx/Vitis_Libraries
https://github.com/llvm/circt/tree/main/

Thanks! Q&A
Hanchen Ye

May 18, 2021

