
IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 1

MLCD: Machine Learning-based Code Version and
Device Selection for Heterogeneous Systems
Kaiwen Cao, Hanchen Ye, Yihan Pang, Student Member, IEEE and Deming Chen, Fellow, IEEE

Abstract—Heterogeneous systems with hardware accelerators
are increasingly common, and various optimized implementa-
tions/algorithms exist for computation kernels. However, no single
best combination of code version and device (C&D) can outper-
form others across all input cases, demanding a method to select
the best C&D pair based on input. We present machine learning-
based code version and device selection method, named MLCD,
that uses input data characteristics to select the best C&D pair
dynamically. We also apply active learning to reduce the number
of samples needed to construct the model. Demonstrated on two
different CPU-GPU systems, MLCD achieves near-optimal speed-
up regardless of which systems tested. Concretely, reporting
results from system one with mid-end hardwares, it achieves
99.9%, 95.6%, 99.9%, and 98.6% of the optimal acceleration
attainable through the ideal choice of C&D pairs in General
Matrix Multiply, PageRank, N-body Simulation, and K-Motif
Counting, respectively. MLCD achieves a speed-up of 2.57×,
1.58×, 2.68×, and 1.09× compared to baselines without MLCD.
Additionally, MLCD handles end-to-end applications, achieving
up to 10% and 46% speed-up over GPU-only and CPU-only
solutions with Graph Neural Networks. Furthermore, it achieves
7.28× average speed-up in execution latency over the state-of-the-
art approach and determines suitable code versions for unseen
input 108 − 1010× faster.

Index Terms—Machine Learning, Heterogeneous Systems, In-
put Data-aware, Performance Optimizations, Active Learning

I. INTRODUCTION

THE end of Dennard scaling has driven the adoption of
accelerators, such as GPUs, in data centers and edge

devices. For example, Amazon’s P4 or G4 cloud machines
come with high-performance discrete GPUs and multicore
CPUs, while Nvidia Jetson Orin Nano is a low-power platform
with a mobile GPU and six ARM CPUs. The increase in
the heterogeneity of hardware is accompanied by a growing
spectrum of algorithms and optimizations for common com-
putational kernels. For instance, convolution kernels, such as
those found in Deep Neural Networks (DNN), can be realized
by the Fast Fourier Transform (FFT) [1], Winograd [2], and
General Matrix Multiply (GEMM) [3]. Thus, to achieve the
best performance, we must select both the software imple-
mentation and hardware device, which often use different
techniques to optimize the performance. In this work, we
refer to these combinations of software implementations and

K. Cao, H. Ye and D. Chen are with the Department of Electrical and
Computer Engineering, University of Illinois at Urbana–Champaign, Urbana,
IL, 61801, USA (e-mail: {kaiwenc2, hanchen8, dchen}@illinois.edu).

Y. Pang is with the Department of Computer Science, University
of Illinois at Urbana–Champaign, Urbana, IL, 61801, USA (e-mail: yi-
hanp2@illinois.edu).

hardware devices as code version and device (C&D) pairs.
C&D pair selection problem. In this heterogeneous land-
scape, we observe: (1) there are multiple C&D pairs for a given
kernel, (2) the performance of a C&D pair may vary based
on the input data’s characteristics, and (3) the input data’s
characteristics vary based on the domain of the application and
when the kernel is invoked [4]. For a given application, a single
kernel may be used multiple times, with drastically different
data in each call. Thus, we find that there is no single best
choice for all cases. For example, GPUs excel at processing
GEMM, when matrix size and shape enable efficient tiling and
distribution across GPU. However, extremely sparse matrices
with irregular memory access patterns can offset the benefits
of the GPU’s parallelism [5]. Thus, a multicore CPU may
outperform GPUs depending on the size, shape, and sparsity
of input data. Similarly, different algorithms on the same
device demonstrate varying characteristics. For instance, for
GPU, nvGRAPH’s [6] PageRank implementation is generally
faster for larger graphs, but Gunrock’s [7] implementation
can perform better for graphs with a larger diameter. In
N-body Simulation, as we find in our evaluation later, the
CPU implementations generally perform better with a smaller
number of bodies, but the number of timesteps also influences
which CPU implementation is the best. In K-Motif Counting,
the FlexMiner [8] implementation outperforms Sandslash [9]
implementation for lower graph density (the ratio between
the number of edges over vertices); meanwhile, when the
size of the graph becomes extremely large the G2Miner [10]
implementation on GPU shows advantages over the previous
implementations. In Graph Neural Networks, as shown later,
with different characteristics of the graph, layers running on
the CPU or GPU may outperform each other. Based on the
observations over such a diverse set of workloads, intelligent
C&D pair selection is critical for attaining high performance.

Existing approaches. Accurately predicting the best C&D
pair is a challenging problem. Previous attempts fall into two
categories, online and offline, and both have their limitations.
Online profiling [11], [12] operates during application runtime
without needing prior knowledge. Because the overhead of
transferring data from the CPU to the GPU on the same die is
negligible, the latency of online profiling of different devices’
performance and workloads re-scheduling will not impact end-
to-end performance too much. Therefore, it is often con-
strained to integrated CPU-GPU systems with shared memory,
exhibiting limited applicability to systems with discrete accel-
erators due to high data transfer overhead. In contrast, offline

0000–0000/00$00.00 © 2024 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 2

profiling [13]–[15] is applicable to a wider range of hardware.
However, it fails to consider runtime data characteristics like
graph diameters, leading to decisions based on static input
features or predefined thresholds. Recent works [16], [17]
combine online and offline approaches. They utilize the offline
method when input characteristics are previously profiled.
However, they fall back to the online method for unseen input
characteristics, which often results in suboptimal performance
due to the lack of prior knowledge.

Our proposal. In this work, we introduce the concept of
dynamic data-aware optimization and provide an effective
methodology for it. We propose a machine learning-based
method, named MLCD, to select the best C&D pair during
runtime, demonstrated on a CPU-GPU system. It is aware
of both the static and runtime input data characteristics,
such as the sparsity of matrices or the diameter of graphs,
allowing it to make more accurate predictions on a wider
range of workloads. We also extend MLCD with a dynamic
programming-based algorithm to handle complicated end-to-
end applications like neural networks.

Our contributions are as follows:
• Analyze the relationship between the input characteristics

and performance of C&D pairs using a diverse number
of different workload cases, demonstrating the performance
gain of data-aware C&D pairs selection.

• Propose MLCD, an efficient decision tree-based machine
learning algorithm, to guide data-aware C&D selection,
achieving performances that are 99.9%, 95.6%, 99.9%, and
98.6% of the optimal ideal speed-up for GEMM, PageRank,
N-body Simulation and K-Motif Counting kernels. MLCD
achieves a speed-up of 2.57×, 1.58×, 2.68×, and 1.09×
for these kernels, respectively, compared to the baselines
without MLCD.

• Enhance MLCD with active learning that significantly re-
duces the number of samples needed to construct the
decision tree model without compromising the selection
quality. The active learning-augmented method requires at
least 4.86×, 7.38×, 9.11× and 1.06× fewer samples for
training in GEMM, PageRank, N-body Simulation, and K-
motif Counting while maintaining near-optimal decision-
making capabilities that achieve 99.9%, 95.1%, 99.9%, and
94.9% of the ideal speed-up, respectively.

• Extend MLCD with a dynamic programming-based algo-
rithm to handle end-to-end applications in O(N) time com-
plexity, where N is the number of kernels in the application.
MLCD offers up to 10% and 46% speed-up over GPU-only
and CPU-only solutions (running the entire application on
the GPU or CPU) on Graph Neural Networks (GNN).

• Achieve 7.28× average reduction in GEMM execution
latency compared to TVM [16], [18] across diverse input
shapes. More importantly, MLCD is several orders of mag-
nitude faster in determining the most suitable code version
compared to TVM: 104× faster for seen data inputs and
108 − 1010× faster for unseen ones.

II. MOTIVATION

GEMM is one of the most important computation kernels in
a wide range of application domains, including scientific com-

Fig. 1. Best C&D pair for GEMM in the input feature space. All axes are in
log2 scale, with axis labels representing the corresponding powers of two.

puting [4], machine learning [19], and graph processing [20].
In this section, we use a GEMM between matrix A (size of
M × K) and B (size of K × N) as a driving example to
illustrate the difficulty of the C&D pair selection problem from
two perspectives: the quality of results and long search time.

A. Challenges in the quality of results

We first construct a set of synthetic GEMM samples with
a wide range of input shapes and sparsity. For each sample,
we measure the latency of all available C&D pairs and record
the best one, as detailed in Section IV. Figure 1 shows the
distribution of the best C&D pair in the input feature space.
The three axes represent the M , N , and K dimensions in the
log scale, and the color of a point represents the best C&D
pair in terms of latency for the specific input. As the legend
in Figure 1 shows, the orange, blue, green, and red points are
for the four CPU code versions as detailed in Section IV-A.
The gray, brown, pink, and purple colors are for the four GPU
versions as detailed in Section IV-A.

The decision boundaries between the colored regions are
extremely complex and non-linear. While the GPU implemen-
tations are faster for larger input in general, the boundary
between CPU and GPU versions is not a flat hyper-plane but
a complex curved surface, reflecting the intricate interplay of
code optimizations and system characteristics. More impor-
tantly, the comparison of sub-figures with varying sparsity
levels shows a shift and transformation in the boundary,
underscoring the importance of implicit input characteristics
in determining the C&D pair.

To further demonstrate the benefits of data-aware C&D pair
selection, we measure the average performance gain from
our method compared to the baseline without MLCD. The
baseline without MLCD is where only a single C&D pair
is available and is used across all input characteristics. We
choose the best-performing baseline for comparison with our
MLCD method. For example, for the GEMM benchmark, there

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 3

Fig. 2. Scatter plot of TVM online search time targeting CPU and GPU as
the backend. All axes are in log scale.

are eight baselines in total (four on CPU and four on GPU
as listed in Table II). We choose Nvidia cuBLAS to compare
with our MLCD method as it achieves the best performance
among all eight baselines. In the experimental results, we
demonstrate the advantages of MLCD: for GEMM, PageRank,
N-body simulation, and K-Motif Counting the speed-up is
2.57×, 1.58×, 2.68×, and 1.09×, respectively, compared to
the baseline without MLCD.

B. Challenges in long search time

The state-of-the-art method, Ansor-integrated TVM [16],
[17], uses offline profiling to match the existing searching logs
with different input shapes, providing the best code version for
a targeted device. If it has not seen the input shape before, it
falls back to the time-consuming online searching algorithm,
tuning the code with various optimizations for that specific
input. In the remainder of this paper, we use TVM to refer to
Ansor-integrated TVM.

In Figure 2, we profile and visualize online search time of
TVM for the GEMM benchmark, with each dot representing
a distinct input shape defined by a combination of M , N ,
and K. For clarity, the input shapes legend indicates that each
dot corresponds to one input, with detailed inputs provided
later in Table V. Covering 143 different shapes, the figure
shows the search times for CPU and GPU code versions on
the x-axis and y-axis, respectively, as TVM can only target
either CPU or GPU for GEMM execution. The x-axis and
y-axis are in log scale and the time unit is in seconds. In
the beginning, TVM doesn’t see any input shapes, relying on
its online search algorithm to determine the best code version.
Most input shapes in TVM require a search time in the order of
103 seconds, but some take an order of 104-105 seconds (up to
5× 105 seconds which is ∼6 days). Considering the diversity
of input data in real-world scenarios, searching for the best
C&D pair for every possible combination becomes infeasible
due to the long search time. On the other hand, MLCD is able
to handle unseen input by running model inferences quickly
within µs, as demonstrated later.

III. C&D PAIR SELECTION ALGORITHM

A. Decision tree algorithm

1) Motivation and design: Decision tree (DT) is a popular
machine learning algorithm that uses a tree structure to repre-
sent the learned model. There are two main reasons for using
DT for C&D pair selection.
• Learning capability. A major advantage of DT is its

ability to learn complicated non-linear relationships using a
relatively small dataset. As shown earlier, the true decision
boundary between different colored regions in Figure 1 for
the best C&D pairs is extremely complex and cannot be
captured by linear models without complicated mathemati-
cal transformations.

• Inference complexity and scalability. The inference of
DT is simpler than deep learning algorithms. The time
complexity of the DT inference is O(log(S)), where S is
the number of training samples. Therefore, the latency of
inference increases moderately with training samples, thus
supporting fast inferences with larger training datasets for
more complex kernels.
In training, samples are recursively split into subgroups

based on input feature values until a stopping condition is met,
forming a decision tree’s internal and leaf nodes. In inference,
a test sample navigates the tree based on these splits and
predicts the sample at the leaf node according to its label.
The output of DT is the predicted C&D pair. The splits aim to
minimize label variation within each subgroup and are chosen
to maximize the purity gain of the sample groups. Several
DT-based ensemble algorithms, such as random forest and
gradient-boosting trees, which have higher inference latency
and larger data footprint, being undesirable for our purpose.

2) Data-aware decision tree feature engineering: The pro-
posed DT model does not solely rely on the function param-
eters or problem sizes. Instead, we extract more implicit fea-
tures of the input and use them for more accurate predictions.
We use GEMM, PageRank, N-body Simulation, and K-Motif
Counting as examples to illustrate how feature engineering
works for various computing patterns.
• GEMM. We use the M , N , K dimensions of two input

matrices, and sparsity as the input features.
• PageRank. It is an algorithm that quantifies the importance

of nodes within a network, leveraging the principle that links
(edges) from significant neighbor nodes contribute more to
a node’s score. It takes a graph of nodes and edges as
input and outputs a numerical value representing each node’s
relative importance or ranking within the network. So, we
construct a more complex set of features suitable for graph
inputs. The features include the number of nodes, number of
edges, total size (nodes + edges), density, effective diameter,
and distribution of input and output degrees. The effective
diameter of the graph is measured by randomly sampling 10
paths and picking the 90 percentile. The distribution of input
and output degrees are represented using the 25th, 50th,
and 75th percentile of the histogram of the in/out degree.
For relatively small sample dataset sizes, we regularize the
model by limiting the minimum number of samples in a leaf
node as 12 based on empirical testing. This regularization

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 4

Algorithm 1: Active learning algorithm
Input:
Initial training set size: Sinit

Target training set size: Starget

Number of samples added in each iteration: Sbatch

Threshold of margin: Uth

Random sample generator: G(# of samples to generate)
Output:
Trained decision tree model: Mfinal

Training set: T
1 T = G(Sinit)
2 Train the guiding model Mguide with dataset T
3 while size(T) ≤ Starget do
4 Tbatch = ∅ // Tbatch is a batch of samples to be added

into the training set in this iteration
5 while size(Tbatch) < Sbatch do
6 Sample P = G(1)
7 if P /∈ T and Margin(Mguide, P) < Uth then
8 Tbatch = Tbatch ∪ P
9 end

10 end
11 T = T ∪ Tbatch

12 Train the guiding model Mguide with T
13 end
14 Train the final model Mfinal with T

strategy prevents the splitting of leaf nodes, thereby limiting
the depth and node count in DT.

• N-body Simulation. An N-body simulation models the
interactions and dynamics of a system of N bodies, typically
under gravitational forces, where the input includes initial
conditions such as positions, velocities, and masses of all
bodies, and the output consists of their evolving trajectories,
providing insights into the system’s behavior over time. So,
for input data features, besides different numbers of bodies,
we include other features such as the different distribution
of initial velocity, position, and mass of the body. We also
include the time stepping and the total simulation iterations
as input features.

• K-Motif Counting. It identifies and counts all unique
subgraphs (motifs) of size K within a larger graph, taking the
graph and the motifs as inputs, and outputting a list of motifs
along with their respective counts. The value K in K-Motif
Counting is one of the input features because it directly
decides the matching patterns (sub-graphs) to count within
the graphs. As the algorithm takes the graph as input, we
also consider input features from the graph. For undirected
graphs, they include the number of nodes, number of edges,
effective diameter, and distribution of degree. The diameter
is measured in the same manner as described in the PageR-
ank section. The distribution of degrees is represented using
the 25th, 50th, and 75th percentile of the degree histogram.

3) Active learning for efficient training: A major limitation
of current methods is the high cost of profiling times for
different kernel implementations, especially when large input
feature spaces are involved. To address this problem, we
propose an active learning strategy to reduce the number of
training samples required.

Why active learning can help. Active learning [21] en-
hances sampling efficiency by allowing the model to determine

the importance of a sample and only label important ones
selectively. So, it reduces training costs by limiting the number
of samples labeled. Meanwhile, it also acts as a regularization
method for DT, preventing overfitting by minimizing noise
sensitivity. In our case, DT partitions the input feature space
where each internal node’s value defines the boundaries of the
partitions. These boundaries should ideally lie on true divi-
sions between differently labeled regions, like the boundary
between any two colored areas in Figure 1. Consequently, the
decision boundary primarily depends on samples near the true
boundary. However, as illustrated in Figure 1, many samples
are distant from any boundary in the feature space, allowing
them to be excluded from the training dataset by the active
learning algorithm.

How we use active learning. Our active learning technique
uses the uncertainty sampling strategy [21] to construct the
training set, where uncertainty indicates whether a sample is
close to any boundary. In our case, uncertainty is measured
by the probability difference between the top two possible
labels for a given sample, termed as margin. For example, for
a sample, if the probability of guiding model’s prediction for
C&D pair ’X’ ’Y’, and ’Z’ are 0.5, 0.4, and 0.1, respectively,
the margin is 0.5 − 0.4 = 0.1. We use separate models
for constructing the training dataset (guiding model) and
for runtime prediction (final model). For the guiding model,
we employ a random forest model that consists of multiple
DTs because such a sophisticated model enables a better
exploration quality. Given a sample, the random forest gives
the probability of every possible label (C&D pair) based on
predictions made by all DTs, and the margin can be computed
accordingly to guide the sampling process. Once the training
dataset is constructed, we train a single DT (final model)
based on the constructed dataset and use that DT for runtime
prediction due to reasons discussed in Section III-A1. This
enables both effective explorations during model learning and
efficient prediction for inference.

Proposed algorithm. Algorithm 1 outlines our active learn-
ing algorithm. Initially, a small random set of labeled samples
forms the base training set (lines 1-2). In each sampling
iteration (lines 5-10), we generate unlabeled random samples
and pass them into the guiding model. Samples with margins
below a set threshold are selected for the current re-training
batch. This process repeats until the desired number of samples
is reached, and samples are then labeled based on C&D pair
profiling. Next, they are added to the training set, and the
model is retrained (lines 11-12). This cycle repeats until the
stopping condition is met (lines 3). Finally, the refined dataset
is used to train the final model for inference (line 14).

B. Dynamic programming algorithm for complicated work-
loads

To generalize MLCD to complicated multi-kernel work-
loads, we come up with two methods to solve the problem.
The first is based on the shortest path algorithm and the other
is based on the Dynamic Programming (DP) algorithm shown
in Algorithm 2. As we will discuss later, although the first one
can find the optimal solution, the DP-based approach can solve
the problem optimally as well with a lower time complexity.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 5

Algorithm 2: Optimal C&D selection algorithm for
applications with multiple kernels

Input:
Total layers of the neural network: N
Optimal C&D latency list on CPU of all layers: Tcpu[N]
Optimal C&D latency list on GPU of all layers: Tgpu[N]
Data transfer latency list between layers: Txfer[N + 1]
// Assume the initial data and final results are on the CPU.
// Txfer[0] is the initial data transfer time from CPU to
GPU.
// Txfer[N] is the final data transfer time from GPU to CPU.
Output:
Optimal device list (size of N) of all layers: D[N]

1 // Dcpu and Dgpu are optimal device lists assuming the
current layer is on CPU/GPU.

2 Dcpu[0] = cpu; Dgpu[0] = gpu
3 // Optimal accumulated latency assuming the current layer is

on CPU/GPU.
4 Tmin

cpu = Tcpu[0]; Tmin
gpu = Tgpu[0] + Txfer[0]

5 for i = 1 → N − 1 do
6 // Dtemp

cpu and Dtemp
gpu are temporary arrays to hold

values for updating.
7 // Select the optimal device list from layer 0 to layer

i− 1 assuming layer i is on CPU. [0 : i− 1] denotes
values from array index 0 to index i− 1 (inclusive).

8 Dtemp
cpu [0 : i− 1] = (Tmin

cpu >
Tmin
gpu + Txfer[i]) ? Dgpu[0 : i− 1] : Dcpu[0 : i− 1]

9 // Select the optimal device list from layer 0 to layer
i− 1 assuming layer i is on GPU.

10 Dtemp
gpu [0 : i− 1] = (Tmin

gpu >
Tmin
cpu + Txfer[i]) ? Dcpu[0 : i− 1] : Dgpu[0 : i− 1]

11 // Update the device lists.
12 Dcpu[0 : i− 1] = Dtemp

cpu [0 : i− 1]; Dcpu[i] = cpu
13 Dgpu[0 : i− 1] = Dtemp

gpu [0 : i− 1]; Dgpu[i] = gpu
14 // Add computation and data transfer latency of layer i

to the optimal latency.
15 Tmin

cpu = Tcpu[i] +min(Tmin
cpu , Tmin

gpu + Txfer[i])
16 Tmin

gpu = Tgpu[i] +min(Tmin
gpu , Tmin

cpu + Txfer[i])
17 end
18 // Return the optimal device list based on the final optimal

latency.
19 D[0 : N − 1] = (Tmin

cpu > Tmin
gpu + Txfer[N]) ? Dgpu[0 :

N − 1] : Dcpu[0 : N − 1]

Two algorithms can select the best C&D pair for each
kernel in end-to-end applications like Graph Neural Networks
(GNN), where each layer functions as a separate kernel [22].
When kernel fusion is possible, such as fusing GEMM with
ReLU, we treat two kernels as a single fused kernel in our
algorithm, because the purpose of fusion is to improve the
performance as a single kernel instead of executing two kernels
one by one. To handle the most common scenario, without loss
of generality, our algorithm assumes the initial data is on the
CPU, and the result is transferred back to the CPU at the end.

1) Algorithm input and output: We consider two possi-
ble cases for whether we have seen the input data to the
workloads: (1) the workload executed on the input before,
and we have that input characteristics information. (2) the
input is unseen, and we do not know the input characteristics
information. For the seen input characteristics, MLCD will call
the DT model inference to obtain the C&D pair decision and
latency for each individual kernel in an offline manner before
running the actual workload. So, the time spent on this can

Fig. 3. Graph constructed for shortest path algorithm.

be ignored. As we show later in Section V, even for unseen
input characteristics, DT inferences occur during runtime in
a negligible latency compared to the kernel execution latency
(less than 0.1% of one layer’s execution latency). Meanwhile,
the data transfer latency between CPU and GPU is analytically
determined based on data size and hardware setup; we verify
latency analysis correctness with micro-benchmarking. Based
on these initial inputs, we design two algorithms that can
identify the optimal devices of each kernel in the workload.

2) Shortest path-based algorithm: We first describe how to
construct the graph for the shortest path algorithm based on
the input mentioned above. As shown in Figure 3, the graph
needs to model each layer i of the workload with two nodes
to represent the CPU and GPU best code version at each
layer. Nodes in layer i connect to two nodes that represent
the CPU and GPU best code version in the next layer i + 1
with directed edges, totaling two outgoing edges per vertex.
Edge weights represent the computation latency of the CPU
or GPU best code version indicated by the source node, and
may include data transfer latency if the source and destination
nodes represent different devices. The shortest path algorithm
can have better time complexity when it becomes a single-
source shortest path algorithm because it only needs to run
the shortest path algorithm once for a single node instead
of running two times for two nodes representing the first
layer in the constructed graph [23]. To make the graph satisfy
the requirement of such an algorithm, we add one artificial
initial node before the first layer and connect it to the two
nodes that represent the first layer. Similarly, we add another
artificial end node after the last layer and connect the last
layer nodes to this artificial node. This reduces the problem to
the single-source shortest path problem. The graph is a non-
negative weighted directed acyclic graph, and the algorithm’s
complexity is O(E+V) [23], where E and V are the number
of edges and vertices in the constructed graph, respectively.
Given that N is the number of kernels in the workload, for
the single source shortest path algorithm in a directed acyclic
graph, the latency is proportional to E + V , where V = 2N
and E = 2V (i.e. 4N). So, the latency of the shortest path
algorithm is proportional to 6N . Next, we further reduce the
time complexity by Dynamic Programming algorithm.

3) Dynamic programming algorithm: The algorithm is
based on Dynamic Programming and uses internal memoiza-
tion data structures for fast recursion. Algorithm 2 describes
the details. Defining N as the number of kernels in the
workload, we introduce internal memoization data structures
as two 1D arrays of size N , Dcpu and Dgpu, to record the
optimal devices in the DP running process. Correspondingly,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 6

there are also two values, Tmin
cpu and Tmin

gpu , which record the
optimal latencies in the DP process, assuming the current layer
is being handled on CPU and GPU, respectively. The DP
algorithm is based on the two recurrence relationships below:

Find Tmin
cpu (i) = Tcpu[i] + min

{
Find Tmin

gpu (i− 1) + TXfer[i],

F ind Tmin
cpu (i− 1)

Find Tmin
gpu (i) = Tgpu[i] + min

{
Find Tmin

cpu (i− 1) + TXfer[i],

F ind Tmin
gpu (i− 1)

The Find Tmin
cpu (i) and Find Tmin

gpu (i) return the minimum
latency from layer 0 to layer i, assuming we finish the com-
putation of layer i on CPU and GPU, respectively. The layer’s
latency is added in at each recursion call, implicitly containing
all the latencies of previous layers. The base case is when layer
i is the first layer, i.e. i = 0, where Find Tmin

cpu (i) = Tcpu[0]
and Find Tmin

gpu (i) = Tgpu[0] + Txfer[0].
Based on the recurrence relationship above, in Algorithm 2,

lines 1-4 set up initial conditions and a memoization data
structure. Subsequent lines determine the optimal devices for
each layer by iterating through this structure. Concretely, line
8 and line 12 handle the case when layer i will be computed
on the CPU. It first checks whichever it is optimal between: (1)
layer i− 1 is computed on CPU; (2) layer i− 1 is computed
on GPU and then transferred to CPU. Then, it can update
Dcpu accordingly. Symmetrically, line 10 and line 13 handle
the case where the layer i will be computed on the GPU and
update the Dgpu accordingly. Note that the device list updates
in lines 8, 10, and 12-13 are O(1) operations because they can
be implemented in pointer-swapping operations in C++. Lines
15-16 update the optimal latencies, Tmin

cpu and Tmin
gpu , assuming

the current layer i is computed on CPU and GPU, respectively.
Lines 18-19 handle the transfer time back to the CPU after the
final layer is computed and we can find the optimal devices
list D based on the comparison result. The whole algorithm
runs with a ”for” loop with N iterations, and each iteration
only has O(1) time complexity. So, the DP-based algorithm
time complexity is O(N). While detailed proof of correctness
is omitted due to space, the algorithm, illustrated here with
neural networks, is applicable to various applications.

4) Algorithm runtime comparison: Given that N is the
number of kernels in the workload, for the single source
shortest path algorithm, the latency is proportional to 6N ; for
the DP-based algorithm, the latency is proportional to N , as
discussed above. Meanwhile, we implement the single source
shortest path algorithm and DP-based algorithm in C++. DP-
based one is 9.6× faster than the shortest path algorithm.
Given that runtime speed is very important, we choose the
DP-based algorithm as our solution. Both algorithms optimize
the end-to-end latency by selecting the best C&D pair for
each kernel systematically, avoiding local optimizations that
might miss the global optimum. They determine whether
data transfers are needed and how they should occur (CPU
to GPU or vice versa), with each kernel’s optimal C&D
pair decided and applied before execution. For example, if
frequent transfers will result in overhead instead of benefit,
the algorithm will identify this issue and automatically pick
the best solution.

TABLE I
SYSTEM HARDWARE SPECIFICATIONS

System configuration System 1 System 2
CPU Model Intel Xeon W-2125 Intel Xeon Gold 5320

CPU Memory 16GB DDR4-2666 128GB DDR4-3200
GPU Model NVIDIA TITAN Xp NVIDIA H100 PCIe

GPU Global Memory 12 GB GDDR5X 80 GB HBM2e

5) Extendability to more complicated hardware configura-
tions: When three or more devices are available, our method
will include more candidate C&D pairs, and the end-to-end
DP algorithm has more recursive relationships and associated
memorization data structures. For instance, with two GPUs
and a CPU, there would be three devices to consider. Ad-
ditionally, when heterogeneous interconnects like PCIe and
NVLink co-exist for a GPU, the data transfer time can be
handled properly by deciding the optimal interconnect based
on micro-benchmarked latencies between two interconnects.
Data transfers between the CPU and GPU would still rely
on PCIe, allowing us to follow our existing method. For
transfers between two GPUs, the data transfer time in our DP
algorithm can be determined by the lower latency between
NVLink-based and PCIe-based P2P, verified using the micro-
benchmark for data transfer.

IV. TRAINING AND EVALUATION METHODOLOGY

A. Data collection

Our data is collected using a system with a 4-core Xeon
CPU and a Nvidia GPU connected via PCIe, detailed in
”System 1” in Table I. To show the generalizability of our
method, we also test on the second system described as
”System 2” in Table I with a recent server-grade 26-core Xeon
CPU and H100 GPU, and the data collection and evaluation
methodology are the same. While demonstrated on a CPU-
GPU setup, this method is adaptable to other heterogeneous
systems as it does not depend on specific hardware. The only
required system-specific information is the latency of the C&D
pairs, which can be systematically collected.

Table II shows the CPU and GPU code versions for all
benchmarks. To ensure consistency among all the benchmarks,
we use single-precision floating-point representation whenever
the floating-point operation is involved. For GEMM fused with
ReLU, the Nvidia cuSPARSE library requires a 50% floating-
point sparsity structure for executing the fused kernel, which
necessitates pruning the matrix to meet this requirement. As a
result, we exclude this C&D pair to avoid inconsistencies with
other inputs. Note that Intel’s fused kernel implementation is
provided under oneDNN, as detailed in Table II. For GEMM,
we collect the latency of four code versions on both CPU and
GPU. Similarly, for PageRank, N-body Simulation, and K-
Motif Counting, we collect the latency for three and two code
versions on CPU and GPU, respectively. For all benchmarks,
we stabilize CPU execution latencies by averaging over 10
iterations, excluding warm-up runs, and GPU execution la-
tencies over 30 iterations due to observed inconsistency in
samples with shorter latencies. We also measure the latency
of data transfers to and from the GPU for a fair comparison.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 7

TABLE II
CPU AND GPU CODE VERSION FOR GEMM, PAGERANK, N-BODY

SIMULATION, AND K-MOTIF COUNTING

CPU code version GPU code version

GEMM

Naive
implementation

Naive
implementation

OpenMP
implementation Nvidia cuBLAS [24]

Intel MKL cBLAS [25] Nvidia cuSPARSE [26]
Intel MKL spBLAS [27] Nvidia CUTLASS [28]

GEMM
fused w/

ReLU

Naive implementation
fused w/ReLU

Naive implementation
fused w/ReLU

OpenMP implementation
fused w/ReLU Nvidia cuBLAS [24]

Intel oneDNN [29] Nvidia CUTLASS [28]

PageRank
Ligra [30] Gunrock [7]

Ligra delta [30] nvGRAPH [6]
Galois [31] -

N-body
Simulation

Intel N-body [32] Barnes-hut tree
algorithm [33]

Cache tiling
w/o OpenMP Nvidia N-body [34]

Cache tiling
w/ OpenMP -

K-Motif
Counting

Pangolin [35] G2Miner [10]

FlexMiner [8] G2Miner [10] w/
counting-only pruning

Sandslash [9] -

The same set of inputs is used to collect the latency for all
code versions of each kernel.

B. Dataset structure

We describe the structure of the datasets that we used for
evaluation. For GEMM, PageRank, N-body Simulation, and K-
Motif Counting, we randomly split the dataset constructed for
each benchmark with 90%/10% splitting, meaning 90% and
10% of the samples used for training and testing, respectively.

1) GEMM: Input matrices are generated with the given M ,
N , K dimension, and the sparsity. Sparse matrices, converted
from dense matrices, are stored in Compressed Sparse Row
(CSR) format. To cover diverse matrix characteristics, we
sweep the N , K values in the range of (2 - 31,298), with 27
points chosen approximately from the geometric series 1.5n

and M of (2 - 9,152) with 22 points. We sweep the sparsity
across the following ten values (0.60, 0.70, 0.80, 0.90, 0.91,
0.93, 0.95, 0.97, 0.99, 0.995), as the study [4] shows most
matrice’s sparsity values in DNN or scientific computing are
higher than 0.6. All these parameters give us 160,380 data
points in total. As discovered in [36], given two different input
sizes that have a small variation, the performance difference
between the two inputs may be significant. To showcase our
method’s effectiveness, we follow a similar way in [36] to
construct the additional dataset as follows: the M , N , and
K are equal and their value varies from 50 to 31,350 in
increments of 100, sweeping across the same ten different
sparsity values we used before. This additional dataset has
3,140 data points. For GEMM fused with ReLU, we use the
same data collection methodology to produce the additional
dataset.

2) PageRank: For the PageRank kernel, we use the Kro-
necker random graph generator from the SNAP package [37]

to generate directed, unweighted graphs, similar to those in the
Graph500 challenge [38]. We generate 8,800 graphs with the
number of nodes ranging from 210 to 217, and limit the edge-
to-node ratio to 1.5− 20 to mirror real-world graphs from the
SNAP network dataset repository [39]. We also pre-process the
generated graphs to ensure that they satisfy the requirements
of all 5 implementations.

3) N-body Simulation: In N-body Simulation, we generate
bodies with varied characteristics. The number of bodies
ranges from 2 to 191,751, selected at 29 points approximately
derived from the geometric series 1.5n. Initial velocities of
bodies are randomly assigned using a normal distribution with
a mean of 1 and three distinct standard deviations (10−5, 1,
and 105) for each different input [40], [41]. Body positions
and masses are generated following the same methodology as
the generation of initial velocities. Additionally, we explore
various time steps (in microseconds [34]) for the simulation
(10−7, 10−4, and 10−1), and different numbers of simulation
iterations (10, 20, 40, 80, and 160). All these parameters give
us 11,745 unique inputs in total.

4) K-Motif Counting: For the number of vertices in K-
Motif (subgraph pattern) counting, we select the value K as
either 3 or 4, because these two values are widely used in
previous implementations [8]–[10], [35]. For the undirected
graph, the number of nodes ranges from 29 to 222, increasing
by the power of 2. The number of edges is determined by the
edge-to-node ratio that changes from 2 to 20, with increments
of 1, to mirror real-world graphs from the SNAP network
dataset repository [39]. When fixing the input feature with the
same number of nodes and edges, we generate 16 different
graph connection topologies, giving various diameters and
distribution of degree percentiles. Considering the different
values of K, we have 8, 512 different input cases in total.

C. Active learning

This algorithm includes several adjustable parameters: the
initial number of training samples (Sinit), the number of sam-
ples labeled per iteration (Sbatch), and the uncertainty thresh-
old value of margin (Uth), which can be tuned to optimize
the final model’s accuracy. For GEMM, we set Sinit = 1000,
Sbatch = 1000, and Uth = 0.5. For PageRank which has fewer
samples than GEMM, we set Sinit = 200, Sbatch = 100,
but maintain Uth = 0.5. For N-body Simulation, we apply
the same hyperparameter settings as for GEMM. For K-
Motif Counting, we set Sinit = 6100, Sbatch = 1000, and
Uth = 0.5.

D. Metrics for evaluation

1) Percentage Performance Penalty (PPP): For classifica-
tion tasks, accuracy is a common metric, but it does not always
reflect the performance impact in C&D pair selection. Specif-
ically, mispredictions near the true decision boundary, where
the performance difference between the correct and incorrect
C&D pairs is minimal, may not significantly degrade accuracy.
To better evaluate the C&D pair selection, we introduce the
Percentage Performance Penalty (PPP) metric. PPP calculates
the percentage difference between the performance of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 8

predicted best C&D pair and the actual best-performing pair.
It is computed by the following formula:

PPP =
Li,jpred −minj Li,j

minj Li,j
× 100%

where Li,j represents the latency of the j-th C&D pair for
the i-th input sample and jpred is the predicted best choice.
j is ranging from one to the total number of C&D pairs for
each benchmark. We further define average PPP as averaging
across every sample’s PPP. In our studies, average PPP is a
key metric, more practical than accuracy, as it directly reflects
performance degradation due to mispredictions. We use this
metric to evaluate selections for GEMM, PageRank, N-body
Simulation, and K-Motif Counting benchmarks. However, for
complicated multi-kernel applications, as mentioned in Sec-
tion III-B, since each single selection at each kernel alone is
not enough for end-to-end optimality, we will not use average
PPP for evaluation.

2) Percentage of Ideal Speed (PoIS): PoIS is another metric
we create for evaluating the quality of C&D pair selection.
The PoIS directly reflects how close the resulting speed is to
the ideal speed (i.e. latency), which demonstrates the model’s
effectiveness from another angle. We define the PoIS as the
ratio of the sum of the latencies by always selecting the fastest
C&D pair over the sum of the latencies by using the C&D
pairs selected by our model. It is computed as follows:

PoIS =
ΣY

i=1 minj Li,j

ΣY
i=1Li,jpred

× 100%

where Y is the number of samples and the rest of the notations
are the same as defined above in PPP. PoIS represents the
achieved speed relative to the theoretical maximum speed,
with an upper limit being 100%. A higher PoIS indicates that
the performance is nearing the optimal speed. Since the sum
of latency is mostly contributed by the samples with larger
latency, the PoIS is more sensitive to these samples, reflecting
that the optimization over larger latency kernels or workloads
is more critical in the real world. In contrast, PPP gives equal
attention to all the samples. For this reason, we use both PPP
and PoIS to show the effectiveness of the C&D pair selection
method from different angles.

For multi-kernel applications, we expand the definition of
PoIS to capture the potential data transfer latency. We first
define minimum latency as the optimal latency achieved by
the exhaustive search. We then calculate the PoIS as the ratio
of the minimum latency over the latency achieved using the
dynamic programming algorithm along with the decision tree
model to run a workload. Note that we show the optimality of
the DP algorithm and the performance gap solely comes from
the mis-selection of the DT model.

Based on our experimental data, lower PPP and higher PoIS
typically lead to better speed-up over the baseline. Meanwhile,
DT inference latency is independent of PPP, PoIS, and accu-
racy changes, as computations remain the same regardless of
model weight values.

2 4 6 8 10 12 14
Reduction Factor

0

20

40

60

80

100

Pe
rc
en

ta
ge Average PPP

PoIS
Accuracy

Fig. 4. Model performance comparison (Average PPP, PoIS, and Accuracy
in percentages) between models built with active learning and full training
dataset for GEMM. The x-axis shows the training-samples reduction factor
with active learning.

V. EXPERIMENTAL RESULTS

A. GEMM case study

The GEMM represents the most common and fundamental
computation pattern in many workloads. In this section, we
show the GEMM benchmark results, the performance with
active learning applied, and the comparison with TVM [17].

1) Effectiveness of data-aware selection: We first test our
data-aware method without active learning, summarized in
Table III, showing the method’s average PPP, PoIS, and model
prediction accuracy. The ML model, which includes data
transfer times between CPU and GPU, successfully predicts
the best version to select in most cases with PoIS close to
100%. Robustness is further demonstrated using 10-fold cross-
validation, showing low standard deviations in PPP (0.44%),
PoIS (0.02%), and accuracy (0.22%). Furthermore, the latency
of the model inference is 0.9 µs. Despite some mispredictions,
their impact on speed-up is negligible due to their proximity to
the decision boundary, where ground truth and predicted C&D
pairs have similar latencies. Additionally, the average PPP is
3.81%, confirming that high PoIS scores are not due to biased
sample selection. Moreover, MLCD can obtain a speed-up of
2.57 × across all input characteristics compared with Nvidia
cuBLAS, a competitive baseline without MLCD. The speed-
up is calculated as an average of speed-up values based on
each different input characteristic. Section II-A discusses how
the baseline is defined.

2) Effectiveness of active learning: Table III demonstrates
the effectiveness of active learning to the GEMM kernel,
achieving a 4.86× reduction in sample size with minimal loss
in PoIS and a reasonable performance degradation on average
PPP. The reduction factor of a value like 4.86 indicates that,
compared to a reduction of 1 where active learning is not
applied, we have decreased the number of required samples
by a factor of 4.86. Figure 4 further depicts the performance
of the active learning method for the GEMM kernel in detail,
showing the reduction factor on the x-axis and the average PPP,
PoIS, and prediction accuracy on the y-axis. Although a higher
reduction factor like 14.5× still allows for a perfect PoIS, the
average PPP is notably higher due to its sensitivity to samples
with smaller latencies. As PPP is inversely proportional to
ideal latency, thus the mispredicted samples with smaller ideal
latency will have increased PPP sensitivity. Meanwhile, since

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 9

TABLE III
EXPERIMENTAL RESULT OF MLCD IN SYSTEM 1 FOR GEMM, PAGERANK, N-BODY SIMULATION, AND K-MOTIF COUNTING

Benchmark Dataset
Size

Active
Learning

Avg.
PPP
(%)

PoIS
(%)

Pred.
Acc.
(%)

Samples
Reduction

Factor

Speed-up
over

Baseline

Speed-up
over TVM

Selection Time
Reduction over TVM

GEMM 160,380
× 2.81 99.9 93.2 1× 2.57× 7.28× ∼ 104× (seen)

∼ 108 − 1010× (unseen)

✓ 3.81 99 93.2 4.86× 2.54× 7.27× ∼ 104× (seen)
∼ 108 − 1010× (unseen)

PageRank 8,800 × 5.65 95.6 88.1 1× 1.58× N.A. N.A.
✓ 6.18 95.1 86.9 7.38× 1.57× N.A. N.A.

N-body
Simulation 11,745 × 2.06 99.9 98.13 1× 2.68× N.A. N.A.

✓ 0.66 99.9 97.7 9.11× 2.68× N.A. N.A.
K-Motif
Counting 8,512 × 3.31 98.6 93.1 1× 1.09× N.A. N.A.

✓ 4.54 94.9 89.6 1.06× 1.05× N.A. N.A.

TABLE IV
EXPERIMENTAL RESULT OF MLCD IN SYSTEM 2 FOR GEMM, PAGERANK, N-BODY SIMULATION, AND K-MOTIF COUNTING

Benchmark Dataset
Size

Active
Learning

Avg.
PPP
(%)

PoIS
(%)

Pred.
Acc.
(%)

Samples
Reduction

Factor

Speed-up
over

Baseline

Speed-up
over TVM

Selection Time
Reduction over TVM

GEMM 160,380
× 3.12 99.85 91.97 1× 2.84× 6.70× ∼ 104× (seen)

∼ 108 − 1010× (unseen)

✓ 2.46 99.76 92.43 4.41 × 2.78× 6.69× ∼ 104× (seen)
∼ 108 − 1010× (unseen)

GEMM* 163,520
× 3.14 99 95.62 1× 2.83× 6.70× ∼ 104× (seen)

∼ 108 − 1010× (unseen)

✓ 3.04 99.94 92.74 4.2 × 2.78× 6.69× ∼ 104× (seen)
∼ 108 − 1010× (unseen)

PageRank 8,800 × 6.04 97.37 93.17 1× 2.58× N.A. N.A.
✓ 6.35 97.22 92.87 6.85× 2.58× N.A. N.A.

N-body
Simulation 11,745 × 3.30 99.9 97.85 1× 2.04× N.A. N.A.

✓ 0.52 99.7 97.33 8.98× 2.03× N.A. N.A.
K-Motif
Counting 8,512 × 3.26 98.71 93.27 1× 1.12× N.A. N.A.

✓ 4.23 95.12 90.33 1.05× 1.07× N.A. N.A.
* means we include additional data points to test our methodology’s capability to handle small input variations for GEMM

TABLE V
INPUT DATA SHAPE COLLECTED FOR TVM’S PERFORMANCE

Input shape Input shape space to sweep across
M 26, 130, 986, 2217
N 26, 130, 986, 2217, 9152, 26477
K 26, 130, 986, 2217, 9152, 26477

the aggregated speed-up combines the latency of all samples,
as long as the model can make correct predictions on samples
with larger latency, the PoIS is still close to perfect. Therefore,
with the reduction of 4.86× our active learning method can
maintain excellent model quality while having a significant
reduction in the training sample size. Moreover, MLCD with
active learning can obtain a speed-up of 2.54 × compared with
Nvidia cuBLAS, a competitive baseline without MLCD.

3) Comparison with TVM: We use the most recent TVM
(commit aa47018) with Ansor [17] integration as the compari-
son target, running on the same hardware as other experiments
(Table I). Following the TVM guide [42], we set the number
of trials for all TVM searches to 1,000 for a fair comparison
with our method. Due to TVM’s long searching time, we do
not search every combination from the input characteristics
space used to show our method’s effectiveness in Section
IV-B1. Therefore, as shown in Table V, we conduct a uniform
sampling to obtain representative input shapes in a balanced

way. We exclude the M=2,217, N=26,477, and K=26,477
input shape because the searching time is more than two
weeks for TVM. In total, we have 143 different input shape
combinations of M , N , and K.

TVM targets a single device during its search process and
does not use the concept of C&D pairs. To ensure a fair
comparison, we define TVM’s best C&D pair as the one with
the shortest latency between CPU and GPU code versions.
Because TVM is agnostic to sparsity, we compare the latency
of the best C&D pair that has the same M , N , and K reported
by TVM against our model under all sparsity settings. Each
M , N , and K combination has 10 different sparsity settings
in our methodology, so we have 143 × 10=1,430 different
input characteristics. All comparison results over TVM are
reported based on these 1,430 points. For each input data
characteristic, we calculate the speed-up ratio as the execution
latency provided by the TVM solution over that provided by
our MLCD method. If the ratio is above one, our ML model’s
selection performs better than TVM’s best C&D pair, and vice
versa. We count the data transfer time between CPU and GPU
for fair comparison.

Performance comparison. We first compare the perfor-
mance of the best C&D pair selected by MLCD (without
active learning applied) and by TVM. MLCD performs bet-
ter for 1,354 out of 1,430 different input cases (94.6%),
demonstrating the superiority of our method. We also observe

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 10

Fig. 5. Speed-up ratio distribution histogram for comparing between MLCD
and TVM.

that higher sparsity matrices (≥ 0.95) tend to achieve better
speed-up (13.97×). As we mentioned before, TVM does not
consider sparsity information, so it cannot achieve a good
C&D pair for a relatively sparse matrix. Considering all 1,430
input shapes, as shown in Table III, the average speed-up
over all samples is 7.28×. To further visualize the result,
in Figure 5, we plot out all 1,430 different data points in a
histogram. The x-axis is the speed-up ratio and the y-axis is
the number of input characteristics that fall into the speed-up
ratio. Applying active learning to MLCD yields similar results,
MLCD performs better for 1,349 out of 1,430 different input
cases (94.3%). Considering all 1,430 input shapes, as shown
in Table III, the average speed-up is 7.27×. Again, we observe
that higher sparsity matrices (≥ 0.95) achieve better speed-up
than average (13.97×). So, active learning largely maintains
the quality of our ML model.

When TVM outperforms our method, the average speed-
up is 1.64×. These cases fall into two categories: (1) All
dimensions (M, N, K) of the GEMM operation are small (e.g.,
all equal to 26), where TVM performs well across all sparsity
levels. (2) When the N dimension is relatively large (9152 or
26477) such that it is 10-25× larger than the M dimension
and 4-25× larger than the K dimension. In case (2), the TVM
shows an advantage in lower sparsity matrices (< 0.97), while
our method outperforms the TVM in all the other matrices.
TVM can effectively find the optimal solution for GEMM
kernels when matrix dimensions are small, resulting in better
performance on these cases.

Searching time comparison. TVM needs a long searching
time if it does not see the input shape before and needs
to store all the searching logs. As mentioned in Section II,
the TVM search time usually takes around 103s to obtain a
selection solution and sometimes takes an order of 104−105s.
In contrast, our method only takes 0.9µs for an inference.
The selection time over TVM of Table III summarizes the
advantage of obtaining the best C&D pair. If we are given
an unseen input shape, TVM has to first search for and then
report the best schedule for this particular new input shape.
On the other hand, due to MLCD’s generalizability, we only
need to make a single inference with the ML model to obtain
the best C&D pair. For an input shape previously searched in

TVM, utilizing the TVM apply_best API to retrieve the
schedule from past searches is still 104× slower than MLCD.
TVM trains different cost models for each GEMM input case
in minutes, while MLCD only requires a single model for all
input cases, which is a one-time training done in minutes.

4) Generalizability to different systems: As shown in Table
IV, we test our methodology with the same set of benchmarks
on a different system to demonstrate the generalizability.
The PPP and PoIS differences between the two systems are
minimal. With active learning, they show a similar reduction in
training samples and a comparable speed-up over the baseline.
These results confirm that our method is effective across
different systems. We further envision that our method can
be generalized to include more input characteristics such as
denormalized numbers, a representation for extremely small
floating-point numbers that leads to longer GEMM execution
latency than the normal floating-point representation.

5) Capability of handling input variation: As noted in [36],
even small variations in input sizes can lead to a significant
difference in performance. To show our method’s capability,
we include the additional 3,140 data points described in IV-A
in our experiment, of which the results are shown in row
”GEMM*” in Table IV. One can observe that the model’s
quality and performance are similar to the result in the row
”GEMM”. Our method considers more internal characteristics
like sparsity and focuses on relative performance when identi-
fying the optimal C&D pair. This can help partition the input
space into four or more dimensions space, which enables our
model to address this challenge effectively.

6) Generality to handle kernel fusion: ReLU is a classic
activation used after the GEMM execution in many modern
kernel libraries. They often provide fused GEMM-ReLU ker-
nels to reduce kernel launch latency and repeated memory
access. We use GEMM fused with ReLU to demonstrate the
extensibility of our method to kernel fusion scenarios. Our
testing result shows PPP, PoIS, and accuracy of 1.5%, 99%,
and 94.08%, respectively. The speed-up over the baseline is
1.13×. With active learning, we are able to have a reduction
factor of 8.12×, and the PPP, PoIS, and accuracy values are
1.49%, 99%, and 94.11%, respectively. The speed-up over the
baseline is 1.11×. These results demonstrate the generality of
our method for kernel fusion.

B. PageRank case study
We demonstrate our method’s generalizability to other appli-

cation domains and input data with the PageRank kernel in this
subsection. The input graphs of PageRank have substantially
different characteristics from the input matrices of GEMM.
Meanwhile, PageRank extracts information from graphs, ex-
hibiting different computation patterns from GEMM. For
fairness, all GPU versions of PageRank include CPU-GPU
data transfer times in their comparisons.

We train a regularized decision tree on the PageRank
dataset. As shown in Table III, it attains an average PPP
of 5.65% and PoIS of 95.6%, indicating that the speed-up
achieved through MLCD is near ideal. TVM, designed for
machine learning [43], cannot handle the PageRank, so com-
parisons to TVM in Table III are marked as Not Applicable

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 11

Fig. 6. Best PageRank C&D pairs in the input feature space. The values of
nodes, edges, and diameter are plotted on a log2 scale.

(N.A.). We test the active learning on the PageRank kernel.
As shown in Table III, we reduce the sample size by 7.38×
while achieving the average PPP of 6.18% and PoIS of 95.1%,
being very close to the performances without active learning.
As shown in Table III and IV, in most evaluation metrics, our
method performs similarly on both tested systems, with system
2 showing a marginally larger speed-up over the baseline.

Figure 6 shows the distribution of the best C&D pair of
the samples in the input feature space with three feature
dimensions: number of nodes, number of edges, and effective
diameter. The three axes are all in the log2 scale (the actual
values are 2exp where exp numbers are shown for the axes)
and the color of a point represents the best C&D pair in terms
of latency for that sample. For graphs with approximately 210

to 215 edges, the CPU versions (green and purple points) can
be faster depending on the diameter of the graph. Moreover,
among the two GPU versions, the best C&D pair also depends
on the diameter and other characteristics of the graphs. Our
experiment shows that, in cases where nvGRAPH is the fastest
C&D pair, the Gunrock library is around 2.51× slower on
average. On the other hand, when Gunrock is the fastest,
nvGRAPH is also around 2× slower on average. Additionally,
as shown in Figure 6, the nvGRAPH library baseline exhibits
a minimum performance gap from our C&D pair selection
and we can achieve a 1.58× speed-up over nvGRAPH. These
observations indicate the need for a data-aware C&D pair
selection method that considers various input characteristics
to obtain the best C&D pair choices.

C. N-body Simulation case study

We use the N-body Simulation as an application from the
scientific computing domain to demonstrate the generalizabil-
ity of our approach. Also, the input is different from matrices
or graphs, which further shows the robustness of our method.
For a fair comparison, we include the CPU-GPU data transfer
time for all GPU versions. As shown in Table III, it achieves
an average PPP of 2.06% and PoIS of 99.9%. Note that
TVM is incapable of handling the N-body Simulation because
it is constrained to generating code versions for machine

learning [43]. So, we mark entries comparing to TVM as
Not Applicable (N.A.) in Table III. We also test the active
learning on the N-body Simulation. As shown in Table III,
we can reduce the sample size by 9.11× while achieving the
average PPP of 0.66% and PoIS of 99.9%, being very close to
the performances without active learning. Notably, we achieve
a 2.68× speed-up over the performance of solely selecting
the Nvidia N-body library baseline. This shows that input
characteristics are important to obtain the best C&D pair. In
Table III and IV, the model demonstrates similar performances
across the two tested systems.

D. K-Motif Counting case study
K-Motif Counting is a representative application of graph

mining. Moreover, the input data consists of two parts. The
first parts are undirected graphs and the second parts are
sub-graph patterns (motifs) to identify. These expand the
input data’s variety to show our methodology’s robustness
and generality. For a fair comparison, we include the CPU-
GPU data transfer time for all GPU versions. As shown in
Table III, the PPP is 3.31% and PoIS is 98.6%. Note that we
mark entries comparing to TVM as Not Applicable (N.A.) in
Table III because TVM is incapable of handling the K-Motif
Counting [43]. With the MLCD, we achieve a speed-up of
1.09× over the baseline that solely selects the state-of-the-
art Sandslash [9] implementation across all input cases. In
our experiment, we find that the GPU implementations often
have a relatively large overhead in data structure transferring
between devices due to the extra initializations and kernel
launches to transfer sub-graph patterns (motifs) and matching
results. This makes the GPU implementations less desirable to
select and reduces the advantage of MLCD. We also apply the
active learning technique and reduce the sample size required
by 1.06× while achieving the average PPP of 4.54% and PoIS
of 94.9%. Through analyzing the input feature space, we find
that the boundaries are extremely complicated around GPU
code versions, making it difficult for active learning to reduce
the sample size effectively. In Table III and IV, the model
achieves similar performances on the second tested system.

E. Graph Neural Networks end-to-end case study
Many neural networks, such as Graph Neural Networks

(GNN) and Convolution Neural Networks, have diverse input
characteristics, making the input shape alone not enough
to guide the kernel selection process [4]. Optimizing GNN
based on input data is challenging because different input
graphs show vastly different characteristics (number of nodes,
edges, density, etc.) from each other. To further demonstrate
our method’s generalizability with the Dynamic Programming
(DP) algorithm on these complicated end-to-end applications,
we evaluate the performance of MLCD on multiple represen-
tative GNN models. We use the popular Graph Convolution
Network (GCN) [44] and GraphSAGE [19] model as the
testing benchmarks that primarily rely on GEMM computation
internally [22]. So, instead of developing an ad-hoc model
for different GNN workloads or re-training, MLCD directly
applies the DT model based on GEMM for these benchmarks
with the integration of the DP algorithm.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 12

TABLE VI
MLCD RESULT ON GRAPH NEURAL NETWORK FOR SYSTEM 1

Benchmark Speed-up over
GPU-only

Speed-up over
CPU-only PoIS

GCN 1.08× 1.46× 94.6%
GraphSAGE 1.1× 1.36× 96.2%

TABLE VII
MLCD RESULT ON GRAPH NEURAL NETWORK FOR SYSTEM 2

Benchmark Speed-up over
GPU-only

Speed-up over
CPU-only PoIS

GCN 1.08× 1.51× 94.8%
GraphSAGE 1.11× 1.39× 96.5%

1) Experiment setup: To apply our methodology to the
GNN, we use DP-based Algorithm 2, which can find the
optimal end-to-end solution. Inference and dynamic program-
ming are usually done before actual workload execution, but
if inputs are unknown beforehand, these processes occur at
runtime. The inference latency of our C&D selection ML
model is less than 1 µs, while the latency of the dynamic
programming algorithm is 0.58 µs, which is trivial when
compared to the overall execution latency of the workload.

We evaluate three real-world datasets (Pubmed, Cora, Cite-
seer [45]) and various synthetic graphs with different input
characteristics. For synthetic graphs, the node numbers range
from 3,000 to 24,000 (in 3,000-node increments) and the edge-
to-node ratio varies from 1 to 8, which leads to different
numbers of edges as well. To better match common GNN
structures, the number of layers varies from 4 to 9 layers
with an increment of one and hidden dimensions from 22 to
27, increasing in powers of two. Additionally, node feature
dimensions range from 1,000 to 5,000, in increments of 1,000.

2) Result: When we measure the latency, we include data
transfer and kernel execution. As shown in Table VI, con-
sidering the decision tree model inference latency and search
algorithm latency at the beginning, on GCN, we achieve
the average speed-up of 1.08× and 1.47× over GPU-only
and CPU-only (running the entire application on GPU or
CPU) solutions, respectively. On GraphSAGE, we achieve the
average speed-up of 1.1× and 1.36× over GPU-only and CPU-
only solutions, respectively. In terms of PoIS, on average,
we are only 5.4% and 3.8% away from the ideal speed-up
for GCN and GraphSAGE, respectively. In Table VI and VII,
the model shows similar performances across the two systems
tested.

To demonstrate the variation in the selected transfer points,
we plot a histogram showing the distribution of the layer where
selected transfer occurs in GCN. For a clear representation of
graph diversity, we fix the node count at 3,000 and vary the
number of edges by sweeping different edge-to-node ratios.
In terms of network structure, we maintain a constant hidden
dimension of 4 and a total of 9 layers, while altering the
node feature dimension. Figure 7 presents a histogram of
the distribution. The x-axis denotes the layer number where
the selected transfer occurs, while the y-axis reflects the
percentage of GNN networks corresponding to each transfer
point on the x-axis. All transfers happen when it runs several
initial layers on the GPU and then transfers the rest of the

Fig. 7. Histogram of the selected transfer of GCN.

computation to the CPU. While the overall trend suggests
that more selected transfer happens when placing relatively
fewer layers on the CPU, no single and straightforward rule
for decision-making.

VI. RELATED WORKS

A. Online approaches

Previous research, such as Farooqui et al. [12] and Kaleem
et al. [11], has explored dynamic device and algorithm se-
lection primarily for integrated CPU-GPU systems. Farooqui
et al. developed an online, instrumentation-based method that
selects the code version by running an instrumented kernel.
However, this method omits critical features like graph size
and diameter. Kaleem et al. focused on workload partitioning
between CPU and GPU without considering multiple algo-
rithms and versions. In contrast, our method accommodates
a wider range of input characteristics and is applicable to
both integrated and non-integrated systems, addressing the
impracticality of online profiling on systems with high data
transfer overhead between discrete devices.

B. Offline approaches

Phothilimthana et al. [13] presented an offline method
that uses empirical data to decide on algorithmic and device
choices during compilation. However, it only considers input
size and simple cutoffs, making it inadequate for varied input
characteristics. Thus, it cannot adapt to inputs with varying
characteristics. Muralidharan et al. [14] used an SVM model
for tuning code variants only based on the input size, and
it only targets Nvidia GPU’s irregular memory access kernel
such as SpMV, limiting its applicability. Luk et al. [15]
developed an offline method to profile different workload
partitioning schemes for runtime decision-making but did not
account for multiple code versions. In contrast, our method
makes decisions based on implicit input characteristics, and
hence, can adapt to a wider range of input cases while
supporting multiple code versions and algorithms.

C. Combined approaches

TVM [16] provides a state-of-the-art method to searching
for the best code version (schedule) for a targeted device.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 13

For unseen input characteristics, it uses the schedule explorer
and the ML-based cost model together, iterating until the
TVM reaches the number of iterations set by users, logging
the best code version from each iteration, and ultimately
selecting the top-performing version as the final output. For
seen input characteristics, it reports the best code version by
directly query searching logs. However, users must provide
templates to guide the search process, requiring detailed
hardware knowledge (e.g., tile size, loop reordering). Ansor
[17] enhances TVM by automating the search algorithm,
improving efficiency, and eliminating the need for manual
template guidance. Compounding the issue is that TVM with
Ansor integration’s offline approach is limited to previously
encountered inputs; for new, diverse input characteristics, it
falls back to more time-consuming online searching for good
code versions.

VII. CONCLUSION

In this work, we presented a dynamic data-aware machine
learning-based code version and device selection method
(MLCD) for heterogeneous systems. We evaluated MLCD on
a diverse set of benchmarking workloads and demonstrated
its effectiveness and generalizability across different domains.
When applied to GEMM, PageRank, N-body Simulation, and
K-Motif Counting, MLCD achieved near-optimal decision-
making capabilities, being 99.9%, 95.6%, 99.9%, and 98.6%
of the ideal speed-up. Compared to the baseline without
MLCD, MLCD had a speed-up of 2.57×, 1.58×, 2.68×,
and 1.09 × respectively, for these workloads. With active
learning, the sample size was reduced by 4.86×, 7.38×, 9.91×
and 1.06 ×, while maintaining near-optimal decision-making
capabilities that achieve 99%, 95.1%, 99.9%, and 94.9% of the
ideal speed-up for these workloads, respectively. Additionally,
we extended MLCD to end-to-end applications with a series
of kernels, showing up to 10% and 46% speed improvements
over GPU-only and CPU-only solutions, respectively, in Graph
Neural Network (GNN) benchmarks. Our method, when com-
pared against TVM, a state-of-the-art approach, achieved a
7.28× speed-up in execution latency for representative GEMM
input shapes, and was 108 − 1010× faster in finding suitable
code versions for unseen inputs. For previously seen inputs, it
was still 104× quicker. We further demonstrate the effective-
ness of MLCD on the second hardware platform and achieve
similar model accuracy and performance numbers to show
our model’s generalization capability. Although demonstrated
in a CPU-GPU system, this methodology is envisioned as a
universal approach, potentially applicable to other domains
and heterogeneous systems, and adaptable for optimizing
metrics like power or energy consumption.

VIII. APPENDIX

Here we present the pseudo code for naive GEMM for CPU
in Algorithm 3 and GPU in Algorithm 4.

REFERENCES

[1] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” arXiv preprint arXiv:1312.5851, 2013.

Algorithm 3: CPU Naive Matrix Multiplication
Input: Matrices A, B; Dimensions M , N , K
Output: Matrix C after computation

1 for i← 0 to M − 1 do
2 for j ← 0 to N − 1 do
3 sum← 0;
4 for k ← 0 to K − 1 do
5 sum← sum+A[i ·K + k] ·B[k ·N + j];

6 C[i ·N + j]← sum;

Algorithm 4: GPU Naive Matrix Multiplication
Input: Matrices A, B; Dimensions M , N , K
Output: Matrix C after computation

1 Kernel Function:
NaiveGEMMGPUKernel(A,B,C,M,N,K);

2 row ← blockIdx.y · blockDim.y + threadIdx.y;
3 col← blockIdx.x · blockDim.x + threadIdx.x;
4 sum← 0;
5 if col < N and row < M then
6 for i← 0 to K − 1 do
7 sum← sum+A[i·M+row]·B[col ·K+i];

8 C[col ·M + row]← sum;

9 Host Function: NaiveGEMMGPU(A,B,C,M,N,K);
10 block ← 32;
11 dimGrid← (⌈N/block⌉, ⌈M/block⌉, 1);
12 dimBlock ← (block, block, 1);
13 NaiveGEMMGPUKernel

⟨⟨⟨dimGrid, dimBlock⟩⟩⟩(A,B,C,M,N,K);

[2] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 4013–4021.

[3] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” in 2017 IEEE 28th
international conference on application-specific systems, architectures
and processors (ASAP). IEEE, 2017, pp. 19–24.

[4] T. Gale, M. Zaharia, C. Young, and E. Elsen, “Sparse gpu kernels for
deep learning,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–14.

[5] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger, “Adap-
tive sparse matrix-matrix multiplication on the gpu,” in Proceedings of
the 24th symposium on principles and practice of parallel programming,
2019, pp. 68–81.

[6] “nvGraph,” https://docs.nvidia.com/cuda/nvgraph/index.html.
[7] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,

C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: Gpu graph
analytics,” ACM Trans. Parallel Comput., vol. 4, no. 1, pp. 3:1–3:49,
Aug. 2017.

[8] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,
“Flexminer: A pattern-aware accelerator for graph pattern mining,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 581–594.

[9] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: a
two-level framework for efficient graph pattern mining,” in Proceedings
of the ACM International Conference on Supercomputing, 2021, pp.
378–391.

[10] X. Chen et al., “Efficient and scalable graph pattern mining on {GPUs},”
in 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022, pp. 857–877.

[11] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali,
“Adaptive heterogeneous scheduling for integrated gpus,” in Proceedings

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, JULY 2024 14

of the 23rd international conference on Parallel architectures and
compilation, 2014, pp. 151–162.

[12] N. Farooqui, I. Roy, Y. Chen, V. Talwar, and K. Schwan, “Accelerating
graph applications on integrated gpu platforms via instrumentation-
driven optimizations,” in CF ’16, 2016, pp. 19–28.

[13] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,
“Portable performance on heterogeneous architectures,” in ASPLOS ’13,
2013, pp. 431–444.

[14] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catan-
zaro, “Nitro: A framework for adaptive code variant tuning,” in 2014
IEEE 28th International Parallel and Distributed Processing Sympo-
sium. IEEE, 2014, pp. 501–512.

[15] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, 2009, pp. 45–55.

[16] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An
automated end-to-end optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 578–594.

[17] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang,
J. Yang, D. Zhuo, K. Sen, J. Gonzalez, and I. Stoica, “Ansor: Generating
high-performance tensor programs for deep learning,” in 14th USENIX
symposium on operating systems design and implementation (OSDI 20),
2020, pp. 863–879.

[18] “Introducing tvm auto-scheduler (a.k.a. ansor),”
https://tvm.apache.org/2021/03/03/intro-auto-scheduler.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[20] C. W. Coley, W. Jin, L. Rogers, T. F. Jamison, T. S. Jaakkola, W. H.
Green, R. Barzilay, and K. F. Jensen, “A graph-convolutional neural
network model for the prediction of chemical reactivity,” Chemical
science, vol. 10, no. 2, pp. 370–377, 2019.

[21] B. Settles, “Active learning literature survey,” Tech. Rep., 2010.
[22] G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-purpose

sparse matrix-matrix multiplication on gpus for graph neural networks,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–12.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[24] “cublas,” https://docs.nvidia.com/cuda/cublas/index.html.
[25] “Intel BLAS Level 3 Routines,” https://www.intel.com/content/www/us/en/

docs/onemkl/developer-reference-c/2023-2/blas-level-3-
routines.htmlGUID-73761EEF-B0DC-4F41-9B7E-C8D6202866BF.

[26] “cusparse,” https://docs.nvidia.com/cuda/cusparse/index.html.
[27] “Intel Sparse BLAS Level 2 and Level 3 Routines,”

https://www.intel.com/content/www/us/en/docs/onemkl /developer-
reference-c/2024-1/sparse-blas-level-2-and-level-3-routines-001.html.

[28] “Cutlass,” https://nvidia.github.io/cutlass/.
[29] “Intel oneAPI Deep Neural Network Library,”

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onednn
.html.

[30] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’13, 2013.

[31] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’11, 2011.

[32] “Intel oneAPI Base Toolkit,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/base-toolkit.html.

[33] M. Burtscher and K. Pingali, “An efficient cuda implementation of
the tree-based barnes hut n-body algorithm,” in GPU computing Gems
Emerald edition. Elsevier, 2011, pp. 75–92.

[34] “Fast N-Body Simulation with CUDA,”
https://developer.nvidia.com/gpugems/gpugems3/ part-v-physics-
simulation/chapter-31-fast-n-body-simulation-cuda.

[35] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on cpu and gpu,” Proceedings of the
VLDB Endowment, vol. 13, no. 8, pp. 1190–1205, 2020.

[36] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel
data-partitioning algorithm for performance optimization of data-parallel

applications on heterogeneous hpc platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 10, pp. 2176–2190, 2018.

[37] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[38] “Benchmark specification — graph 500,” https://graph500.org/?page
id=12.

[39] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data.

[40] N. Perraudin, A. Srivastava, A. Lucchi, T. Kacprzak, T. Hofmann, and
A. Réfrégier, “Cosmological n-body simulations: a challenge for scalable
generative models,” Computational Astrophysics and Cosmology, vol. 6,
pp. 1–17, 2019.

[41] A. Jenkins, “A new way of setting the phases for cosmological multiscale
gaussian initial conditions,” Monthly Notices of the Royal Astronomical
Society, vol. 434, no. 3, pp. 2094–2120, 2013.

[42] “Optimizing operators with auto-scheduling,”
https://tvm.apache.org/docs/tutorial/auto scheduler matmul x86.html.

[43] “Apache TVM,” https://tvm.apache.org.
[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
[45] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-

Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

Kaiwen Cao is a PhD candidate in the Depart-
ment of Electrical and Computer Engineering at the
University of Illinois at Urbana-Champaign (UIUC),
Urbana, IL, 61801, USA. His research interests
include heterogeneous computing. He received his
dual Bachelor’s degree from Zhejiang University and
the University of Illinois at Urbana-Champaign.

Hanchen Ye is a PhD candidate in the De-
partment of Electrical and Computer Engineer-
ing at the University of Illinois at Urbana-
Champaign (UIUC). His research focuses on hard-
ware compilers (ScaleHLS/XLS/CIRCT), AI com-
pilers (StreamTensor/HIDA), and AI accelerators
(CHARM/HybridDNN/DNNExplorer). He received
his Bachelor’s and Master’s degrees from Fudan
University, respectively.

Yihan Pang is a Ph.D. candidate in the Department
of Computer Science at the University of Illinois
at Urbana-Champaign (UIUC). His research focuses
on the design and development of efficient Extended
Reality (XR) systems. He holds both Bachelor’s
and Master’s degrees in Computer Engineering from
Virginia Tech.

Deming Chen is the Abel Bliss Professor in the
Grainger College of Engineering at the University
of Illinois Urbana-Champaign. His research interests
include hybrid cloud systems, machine learning and
AI, security and confidential computing, reconfig-
urable and heterogeneous computing, and system-
level design methodologies. He has published over
290 research papers, received 10 Best Paper Awards
and an ACM/SIGDA TCFPGA Hall-of-Fame Paper
Award, and delivered more than 160 invited talks.
His work has had a significant impact, with open-

source solutions adopted by industry, such as FCUDA, DNNBuilder, CSRNet,
SkyNet, ScaleHLS, and Medusa. He is an IEEE Fellow, an ACM Distin-
guished Speaker, and the former Editor-in-Chief of ACM Transactions on
Reconfigurable Technology and Systems (TRETS). He serves as the Illinois
Director of the IBM-Illinois Discovery Accelerator Institute and the Director
of the AMD-Xilinx Center of Excellence. He received his Ph.D. in Computer
Science from UCLA in 2005.

