US 20250094679A1

a9 United States
a2y Patent Application Publication o) Pub. No.: US 2025/0094679 A1

Pan et al. 43) Pub. Date: Mar. 20, 2025
(54) LOW-LEVEL FEEDBACK-GUIDED (52) US. CL
SCHEDULING FOR HIGH-LEVEL CPC ..ot GO6F 30/327 (2020.01)
SYNTHESIS
57 ABSTRACT
(71) Applicant: DeepMind Technologies Limited,
Mountain View, CA (US) The technology employs an iterative system of difference
constraints (ISDC) approach that leverages low-level feed-
(72) Inventors: Zhigang Pan, Austin, TX (US); back from downstream tools to iteratively refine scheduling
Hanchen Ye, Sunnyvale, CA (US); with respect to circuit design high-level synthesis. In each
Xiaoqing Xu, Mountain View, CA iteration, a number of subgraphs are extracted from an
(US); Christopher Daniel Leary, original computation graph and passed to selected down-
Sunnyvale, CA (US) stream tools, e.g., for logic synthesis, placement and/or
routing. The downstream tools’ compilation results are
(21)  Appl. No.: 18/825,059 extracted and fed back to a scheduler. With the feedback, the

(22) Filed:

scheduler recalculates delay estimation between each pair of

Sep. 5, 2024 nodes in the original computation graph and prunes redun-

Related U.S. Application Data dant scheduling constraints. As a result, the explorable

design space is enlarged in the next iteration, leading to

(60)  Provisional application No. 63/538,525, filed on Sep. refined scheduling results. This feedback-guided approach is

15, 2023.

Publication Classification

(51) Int. CL

compatible with versatile design constraints and objectives,
such as minimizing register usage given a targeted clock
period, minimizing the clock period given a constrained area
budget, etc., to provide improvements to the system opera-

GO6F 30/327 (2020.01) tion.

1402 7\

Creating, by one or more processors, an initial pipeline comprising a set of nodes, the initia pipeline
corresponding to a function to be implemented by an integrated circuit according to a set of constraints,
in which adjacent pairs of nodes are each associated with a corresponding timing constraint
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Performing, by the one or more processors, subgraph extraction on the initial pipeline to obtain a set of
cormbinational subgraphs
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Providing, by the one or more processors, the set of combinational subgraphs to one or more
downstream tools, the one or more downstream tools including at least one of a logic synthesis tool, a
placement tool or a routing tool
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Obtaining, by the one or more processors from the one or more downstream tfools, a set of subgraph
delays
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Revising, by the one or more processors based on the obtained set of subgraph delays, the initial
pipeline comprising the set of nodes to create an updated pipeline comprising an updated set of nodes,
the updated pipeline corresponding to the function to be implemented by the integrated circuit
according to the set of constraints, in which adjacent pairs of the updated set of nodes are each
associated with a corresponding updated timing constraint
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LOW-LEVEL FEEDBACK-GUIDED
SCHEDULING FOR HIGH-LEVEL
SYNTHESIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of and priority
to U.S. Provisional Application No. 63/538,525, filed Sep.
15, 2023, the entire disclosure of which is incorporated
herein by reference.

BACKGROUND

[0002] Scheduling is one of the most important problems
in circuit design high-level synthesis (HLS) that partitions a
control dataflow graph (CDFG) into multiple clock cycles
under the given timing and resource constraints. HLS is a
compilation technique that converts high-level algorithmic
descriptions (e.g., C/C++) into functionally-equivalent reg-
ister-transfer level (RTL) hardware implementations (e.g., in
Verilog). Scheduling is the key component of HLS that
partitions a given computation graph into multiple pipeline
stages such that the total register usage is minimized while
no individual pipeline stage between a node pair has a
critical path longer than a specified clock period.

[0003] Various HLS tools rely on high-level intermediate
representation (IR) for timing analysis, area/resource analy-
sis, and scheduling. In this context, the IR operations, such
as integer adder and multiplier, may be viewed as the
fundamental elements to schedule against. Their delays and
resources are pre-characterized in isolation through down-
stream tools, such as logic synthesizer for a target technol-
ogy library. While this approach can capture some low-level
characteristics of individual operations, it does not model
further optimizations in downstream tools, leading to esti-
mations that are substantially different from the actual
quality of results (QoR). Thus, such approaches can result in
insufficient and/or ineffective solutions.

SUMMARY

[0004] Aspects of the technology employ an iterative
system of difference constraints (ISDC) approach for HL.S
that leverages low-level feedback from downstream tools,
such as logic synthesizers, to iteratively refine HLS sched-
uling.

[0005] The technology provides a drastically new way to
perform HLS by introducing an iterative scheduling method
that leverages low-level feedback from downstream tools to
refine the scheduling in an automated way. In each iteration,
a number of subgraphs are extracted from the original
computation graph and passed to downstream tools for logic
synthesis, and optionally, placement and routing. The down-
stream tools” compilation results, e.g., the logic depth or the
timing analysis of each subgraph, can be extracted and fed
back to the scheduler. With the guidance of low-level
feedback, the scheduler is able to recalculate the delay
estimation between each pair of nodes in the computation
graph and prune the redundant scheduling constraints. As a
result, the explorable design space is enlarged in the next
iteration, leading to refined scheduling results. This feed-
back-guided approach is compatible with versatile design
constraints and objectives, e.g., minimizing register usage
given a targeted clock period, minimizing the clock period
given a constrained area budget, etc.

Mar. 20, 2025

[0006] Technical innovations and benefits include: (1) an
enhanced system of difference constraints (SDC) formula-
tion that effectively integrates low-level feedback into the
linear-programming (LP) problem; (2) a fanout and win-
dow-based subgraph extraction mechanism driving the feed-
back cycle; and (3) a no-human-in-loop ISDC workflow
compatible with any downstream tools and process design
kit (PDK). Evaluation results show that ISDC may reduce
register number by an average of 28.5% compared to an
existing industrial-strength open-source HLS tool that
employs SDC scheduling.

[0007] According to one aspect of the technology, a com-
puter-implemented method comprises: creating, by one or
more processors, an initial pipeline comprising a set of
nodes, the initial pipeline corresponding to a function to be
implemented by an integrated circuit according to a set of
constraints, in which adjacent pairs of nodes are each
associated with a corresponding timing constraint; perform-
ing, by the one or more processors, subgraph extraction on
the initial pipeline to obtain a set of combinational sub-
graphs; providing, by the one or more processors, the set of
combinational subgraphs to one or more downstream tools,
the one or more downstream tools including at least one of
a logic synthesis tool, a placement tool or a routing tool;
obtaining, by the one or more processors from the one or
more downstream tools, a set of subgraph delays; and
revising, by the one or more processors based on the
obtained set of subgraph delays, the initial pipeline com-
prising the set of nodes to create an updated pipeline
comprising an updated set of nodes, the updated pipeline
corresponding to the function to be implemented by the
integrated circuit according to the set of constraints, in
which adjacent pairs of the updated set of nodes are each
associated with a corresponding updated timing constraint.
The method may further comprise fabricating the integrated
circuit using the updated pipeline.

[0008] In one scenario, the method further comprises
iteratively repeating the performing, providing, obtaining
and revising steps until a scheduling result satisfies a set of
metrics. Here, in each iteration: the subgraph extraction is
performed on a current iteration of the updated pipeline to
obtain an updated set of combinational subgraphs; providing
the set of combinational subgraphs comprises providing the
updated set of combinational subgraphs to the one or more
downstream tools; obtaining the set of subgraph delays
comprises obtaining an updated set of subgraph delays; and
revising the initial pipeline comprises revising the updated
pipeline.

[0009] Alternatively or additionally to any of the above,
the updated pipeline may achieve a scheduling result that is
not achieved by the initial pipeline. Alternatively or addi-
tionally to any of the above, the set of combinational
subgraphs may be less than all the subgraphs for the initial
pipeline. Alternatively or additionally to any of the above,
each node of the set of nodes may represent an operation to
be performed according to the function to be implemented.
[0010] Alternatively or additionally to any of the above,
the function to be implemented may be associated with a
linear programming problem. In this case, revising the initial
pipeline to create the updated pipeline may include con-
structing an updated linear programming problem. Alterna-
tively or additionally to any of the above, revising the initial
pipeline to create the updated pipeline may include remov-
ing redundant timing constraints. Alternatively or addition-
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ally to any of the above, the set of constraints may comprise
timing constraints associated with the set of nodes. Here, the
timing constraints may correspond to a target clock period.

[0011] Alternatively or additionally to any of the above,
the set of constraints may be expressed in integer-difference
form. Alternatively or additionally to any of the above,
revising the initial pipeline to create the updated pipeline
may include performing delay updating of estimated critical
path delays for the node pairs. Here, revising the initial
pipeline to create the updated pipeline may further include
reformulating each corresponding timing constraint.

[0012] According to another aspect of the technology, a
processing system is provided that, comprises memory
configured to store information associated with fabrication
of an integrated circuit, and one or more processors opera-
tively coupled to the memory. The one or more processors
are configured to create an initial pipeline comprising a set
of nodes, in which the initial pipeline corresponds to a
function to be implemented by the integrated circuit accord-
ing to a set of constraints, in which adjacent pairs of nodes
are each associated with a corresponding timing constraint.
The one or more processors are also configured to: perform
subgraph extraction on the initial pipeline to obtain a set of
combinational subgraphs; provide the set of combinational
subgraphs to one or more downstream tools, the one or more
downstream tools including at least one of a logic synthesis
tool, a placement tool or a routing tool; obtain, from the one
or more downstream tools, a set of subgraph delays; and
revise, based on the obtained set of subgraph delays, the
initial pipeline comprising the set of nodes to create an
updated pipeline comprising an updated set of nodes. The
updated pipeline corresponds to the function to be imple-
mented by the integrated circuit according to the set of
constraints, in which adjacent pairs of the updated set of
nodes are each associated with a corresponding updated
timing constraint.

[0013] Alternatively or additionally to any of the above,
the one or more processors may be further configured to
generate an integrated circuit design using the updated
pipeline in order to fabricate the integrated circuit. Alterna-
tively or additionally to any of the above, the one or more
processors may be further configured to iteratively repeat the
perform, provide, obtain and revise operations until a sched-
uling result satisfies a set of metrics. Here, in each iteration:
the subgraph extraction is performed on a current iteration of
the updated pipeline to obtain an updated set of combina-
tional subgraphs; provide the set of combinational subgraphs
comprises providing the updated set of combinational sub-
graphs to the one or more downstream tools; obtain the set
of subgraph delays comprises obtaining an updated set of
subgraph delays; and revise the initial pipeline comprises
revising the updated pipeline.

[0014] Alternatively or additionally to any of the above,
the updated pipeline may achieves a scheduling result that is
not achieved by the initial pipeline. Alternatively or addi-
tionally to any of the above, revision of the initial pipeline
to create the updated pipeline may include removal of
redundant timing constraints. Alternatively or additionally to
any of the above, revision of the initial pipeline to create the
updated pipeline may include performance of delay updating
of estimated critical path delays for the node pairs.

Mar. 20, 2025

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1A illustrates an exemplary integrated circuit
design flow in accordance with aspects of the technology.
[0016] FIG. 1B illustrates a plot comparing post-synthesis
STA versus XLS-estimated critical path delay.

[0017] FIG. 1C illustrates an example XLS stack diagram,
which implements an HLS toolchain that produces synthe-
sizable designs from flexible, high-level descriptions of
functionality, for use with aspects of the technology.
[0018] FIG. 2 illustrates an exemplary flow of ISDC
scheduling in accordance with aspects of the technology.
[0019] FIG. 3 illustrates an example of delay-based versus
fanout-based subgraph extraction in accordance with aspects
of the technology.

[0020] FIGS. 4A-B illustrate examples of cone-based ver-
sus window-based subgraph extraction in accordance with
aspects of the technology.

[0021] FIG. 5 illustrates an example of a pseudocode
algorithm of delay updating in accordance with aspects of
the technology.

[0022] FIG. 6 illustrates an example of a pseudocode
algorithm of SDC reformulation in accordance with aspects
of the technology.

[0023] FIGS. 7A-C illustrate charts of an ablation study of
delay-driven and fanout-driven subgraph extraction accord-
ing to a path-based strategy, for 4 subgraphs, 8 subgraphs
and 16 subgraphs per iteration, respectively, in accordance
with aspects of the technology.

[0024] FIGS. 8A-C illustrate charts of an ablation study of
path (dashed lines), cone (dotted lines), and window-based
(solid lines) subgraph extraction according to a path-based
strategy, for 4 subgraphs, 8 subgraphs and 16 subgraphs per
iteration, respectively, in accordance with aspects of the
technology.

[0025] FIG. 9 illustrates a table of benchmarking results in
accordance with aspects of the technology.

[0026] FIG. 10 illustrates a plot of delay estimation accu-
racy comparison across a series of benchmarks in compari-
son to SDC, in accordance with aspects of the technology.
[0027] FIG. 11 illustrates a plot comparing post-synthesis
STA versus ABC AIG depth of 6912 different HLS design
points, in accordance with aspects of the technology.
[0028] FIGS. 12A-D illustrate an example approach in
accordance with aspects of the technology.

[0029] FIGS. 13A-B illustrate an exemplary system in
accordance with aspects of the technology.

[0030] FIG. 14 is a flow diagram in accordance with
aspects of the technology.

DETAILED DESCRIPTION

[0031] FIG. 1A illustrates an exemplary integrated circuit
design flow 100 according to aspects of the technology,
including generating a circuit design and/or fabricating an
integrated circuit that incorporates any of the techniques
discussed herein. As shown, the design flow may include
preparing a system specification at block 102, such as to
identify system-level requirements for the integrated circuit.
The system specification is intended to capture the overall
functionality of the desired integrated circuit. This may
include determining the device’s cost, performance, general
architecture, how off-chip communication will be con-
ducted, etc. The process flow may also include performing
architectural design at block 104. At this stage, the design’s
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architecture and its layout are determined by design engi-
neers. This can include integration of memory management,
analog and/or mixed-signal components, on-device and
external communication, any power constraints, choice of
process technology and/or layer stacks, etc.

[0032] The process flow continues with performing func-
tional design and logic design at block 106, and performing
circuit design at block 108. Functional design may include
refinement of the design’s specification to achieve the func-
tional behavior of the desired system. Logic design involves
adding the design’s structure to a behavioral representation
of the desired design. Here, considerations include logic
minimization, performance enhancement, as well as test-
ability. This stage may consider problems associated with
test vector generation, error detection and correction, and the
like. By way of example, the functional design and logic
design may include generating a behavioral model descrip-
tion (e.g., using HDL) and floor-planning. During circuit
design, logic blocks are replaced by corresponding elec-
tronic circuits, which may include devices such as resistors,
capacitors, and/or transistors. At this stage, circuit simula-
tion may be performed in order to verify timing behavior and
other constraints of the system. A SPICE tool or other
program may be used for circuit simulation.

[0033] Once the circuit design is complete, physical
design may be performed at block 110 (e.g., component and
wiring placement and routing), followed by physical veri-
fication and sign-off at block 112 (e.g., to obtain GDSII
information with shapes to form the masks used to create the
layers for fabricating the integrated circuit). During physical
design, the actual layout of the integrated circuit is per-
formed. Here, all of the components are placed and inter-
connected using metal interconnections. During this stage,
the system may perform optimization of curvilinear inter-
connects, alternatively or additionally to any other layout
operations. A circuit design that is able to pass testing of a
circuit simulator in the circuit design stage may be found to
be faulty after it has been packaged, e.g., due to geometric
design rule issues. Thus, physical design rules are followed
to ensure correctness during chip fabrication. Errors may
include short or open circuits, open channels, or other issues
may result when physical design rules are not followed.
During physical verification and sign-off, the system per-
forms any verification steps that are required before chip
manufacturing. This can include design rule checking and
correction, timing simulation, electromagnetic simulation,
etc.

[0034] Layout post-processing occurs at block 114, then
fabrication at block 116, and the packaging and testing at
block 118. At block 114, the layout post-processing may
include geometry processing before actual manufacturing,
e.g., any dummy fill insertion, correction for optical prox-
imity, mask optimization, etc. Fabrication comprises semi-
conductor manufacturing, which includes stages such as
lithography patterning (masking), baking or annealing, etch-
ing, etc. Then the raw die of the chip is inserted into a
package and I/O pins are connected to the package at block
118. Testing of the chip also occurs at this stage.

[0035] Certain HLS techniques rely on intermediate rep-
resentation (IR) for timing analysis, area/resource analysis,
and scheduling. In this context, the IR operations, such as
integer additions and multiplications, can be viewed as the
fundamental elements to schedule against. Their delays and
resources may be pre-characterized in isolation through
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downstream tools, such as a logic synthesizer, for the target
technology library. While this can capture some low-level
characteristics of individual operations, it does not model
further optimizations in downstream tools, such as logic
resubstitution and rewriting, leading to estimations that can
be substantially different from the actual quality of results
(QoR).

[0036] An example of this can be seen in the plot of FIG.
1B. This figure presents design points of an HLS design
using an accelerated HLS approach (“XLS”), which profiles
post-synthesis static timing analysis (STA) and XL.S-esti-
mated critical path delays. The critical path is the longest
path between a selected pair of nodes, which can determine
a minimum clock period or a maximum operating frequency
for the design. It can be composed of a series of logic gates,
interconnects, registers or other nodes that have the highest
cumulative delay. In particular, FIG. 1B presents post-
syntheses STA versus XL.S-estimated critical path delays of
6,912 different HLS data points. It can be observed that the
XLS-estimated delays (dots 120) exhibit significant devia-
tion from the STA delays (line 122), which were treated as
the ground truth for the evaluation. These deviations create
unused slack and present numerous opportunities to refine
scheduling quality, such as reducing register usage. How-
ever, without access to low-level information, HLS tools
may not effectively capitalize on these opportunities.
[0037] FIG. 1C illustrates an example 130 of an XLS stack
workflow. Inputs in one or both of a programming language
such as C++, as shown in block 132, or a domain-specific
language (DSL) such as DSLX, as shown in block 134, are
input to an XLS IR, as shown in block 136, to obtain an
intermediate representation. DSLX provides immutable
expression-language dataflow DSL with hardware-oriented
features; e.g. arbitrary bit widths, entirely fixed size objects,
and a fully analyzable call graph. DSLX may also be input
to a DSLX interpreter, as shown in block 138.

[0038] The XLS IR block may provide a definition, text
parser/formatter, and facilities for abstract evaluation. The
XLS intermediate representation may output a text file 140
and, as shown, the representation flows to an optimization
pipeline block 142. The representation may also be provided
to one or more of an IR interpreter module 144, a fast
functional simulation module 146, a full stack fuzzer mod-
ule 148, a logical equivalence module 150 and/or a visual-
ization module 152. By way of example, the module 148
may comprise a whole-stack multi-process fuzzer that gen-
erates programs at the DSL level and cross-compares dif-
ferent execution engines (e.g., DSL interpreter, IR inter-
preter, IR JIT, and/or code-generated-Verilog simulator).
[0039] The fuzzer module 148 may be configured so that
it can easily be run on different nodes in a cluster simulta-
neously and accumulate shared findings. This module may
generate a sequence of randomly generated DSLX functions
and a set of random inputs to each function. The visualiza-
tion module 152 is configured to provide visualization tools
to inspect the XLS compiler and system interactively. It may
present the IR in text and graphical form side-by-side and
enable interactive exploration of the IR.

[0040] Upon optimization at block 142, the resultant opti-
mized XLS IR 152 can be provided to one or more of the IR
interpreter module 144, the fast functional simulation mod-
ule 146, the full stack fuzzer module 148, the logical
equivalence module 150 and/or the visualization module
152. The optimized XLS IR 152 is provided to a scheduling
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block 154, and the output of that block flows to a codegen
block 156. The scheduling block 154 may employ one or
more scheduling algorithms to determine when operations
should execute (e.g.. which pipeline stage) in a clocked
design. The codegen block 156 may be configured to gen-
erate a Verilog Abstract Syntax Tree (VAST) to generate
Verilog or System Verilog operations and finite state
machines (FSMs). VAST is built up by components call
generators in the translation from XLS IR. The output from
block 156 may be a hardware description 158 of the circuitry
of interest, e.g., in Verilog, System Verilog or another
format.

[0041] The description 158 can be provided to one or both
of a simulation block 160 or a synthesis block 162. The
simulation block 160 may include an interface that wraps
Verilog simulators and generates Verilog testbenches for
XLS computations. The synthesis block 162 may include an
interface that wraps backend synthesis flows, so that tools
can be retargeted between different hardware flows, e.g.,
ASIC and FPGA flows. Here, a netlist 164 may be passed
from the synthesis block 162 to the logical equivalence
module 150.

Iterative SDC Scheduling

[0042] The HLS IR to be scheduled can be represented as
a directed graph G. For each operation node v in graph G,
SDC scheduling can define a variable s, to represent the time
step in which the operation is scheduled into. By ensuring
constraints in integer-difference form, such as:

Su=Sy Zdyy @®

where d, , is an integer, a totally unimodular constraint
matrix is derived, which is guaranteed to have integral
solutions. A set of common HLS constraints can be
expressed in the form of integer-difference constraints. Spe-
cifically, to meet the target clock frequency, a timing con-
straint is used to constrain the maximum combinational
delay within a clock cycle. For the critical combinational
path (CCP) connecting v;; and v, with the largest delay (the
critical path delay), one can calculate its delay D(ccp(v,,,
v;))as Elekd(vi:) where d(v) is the individual delay of v. For
each operation pair v; and v; with D(ccp(v;, v)))>T ., where
T, is the target clock period, one can construct a constraint
as:

D (ccp (v, vy) 1 @
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[0043] Equation 2 states that the combinational path with
total delay exceeding the target clock period T, must be
partitioned into at least [D(ccp(v;. v;))/T ;] number of
clock cycles.

Overall Scheduling Flow

[0044] FIG. 2 shows an example 200 of the overall flow of
an ISDC scheduling algorithm in accordance with aspects of
the technology. ISDC starts from an initial pipeline, as
depicted in the dash-dot block 202 of section (a) on the top
left of the figure, scheduled with an original SDC scheduling
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algorithm. Note that each node in (a), e.g., nodes v1, v2, . .
., V9, represents an operation of the HLS IR, such as integer
additions or multiplications. On top of this initial schedule,
a set of combinational subgraphs, such as subgraph g at 204
along the lower-left of FIG. 2, are extracted and passed to
downstream tools for subgraph logic synthesis and beyond.
[0045] Subsequently, the subgraph delays, e.g., of the
form D(-), that are fed back from downstream tools 206 are
integrated into an enhanced SDC formulation to construct an
updated LP problem. The downstream tools may be open
source or proprietary tools. Upon solving this LP problem,
a new pipeline schedule is generated as depicted in section
(b) at block 208. This procedure is then iteratively applied to
the new pipeline schedule until a stable scheduling result is
achieved, exemplified by metrics such as register usage. As
illustrated, this iterative process includes delay updating at
block 210 after usage of the downstream tool(s) 206, fol-
lowed by SDC reformulation at block 212, which creates
new delay constraints.

[0046] Downstream tools can include external logic syn-
thesis tools, such as Yosys, which is an open-source frame-
work for Verilog RTL synthesis. However, approaches
according to aspects of the technology are also compatible
with tools beyond logic synthesis tools, such as placement
and routing tools, etc. Moreover, the system may monitor the
number of constraints of a constructed linear programming
(LP) problem to determine whether a stable scheduling
result is achieved. For instance, if the number of constraints
is no longer reduced in an iteration, which means the system
is solving the same linear programming problem as the last
iteration, the scheduling result will not be changed again.
[0047] lLow-level feedback can be very beneficial. As
shown in block 202 of section (a), the initial estimation of
D(ccp(v,, vg)) is calculated as d(v,)+d(v,)+d(vg), which
totals to 12 ns. Given the target clock period of 10 ns, v, and
vg must be scheduled into separate clock cycles. However,
suppose the delay of subgraph g reported by downstream
tools is 7 ns. Then D(ccp(v,, vg)) can be recalculated as
D(g)+d(vg), equaling to 10 ns. As a result, v8 can now be
merged into the same clock cycle as v,, leading to a decrease
in register usage as depicted in dash-dot block 208 of section
(b). This underscores the significance of low-level feedback
in refining scheduling result. Such feedback empowers
ISDC to identify better design points that might have been
erroneously overlooked by the original SDC scheduling
algorithm.

[0048] Considering the real-world constraints of compu-
tational resources, it is infeasible to evaluate every subgraph
in an HLS design for feedback, especially given the expo-
nential increase in complexity as the HLS design grows. By
using an iterative approach, ISDC can capitalize on knowl-
edge from prior iterations, substantially reducing the search
space of subgraph extraction by focusing on combinational
subgraphs from the previous schedule. This approach helps
ISDC incrementally refine the scheduling result, maintain-
ing manageable computational complexity throughout each
iteration.

Subgraph Extraction Strategy

[0049] Despite using an iterative approach, the number of
subgraph candidates typically remains vast, which can read-
ily result in slow convergence. There are different ways to
address this problem, including a fanout-drive strategy and
a window-based strategy.
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[0050] A direct and intuitive extraction strategy is delay-
driven, in particular, focusing on the longest paths (e.g.,
critical paths) from the previous schedule because of their
impact on the achievable clock frequency. Nonetheless, it
can be appreciated that relying solely on delay is not the
most effective strategy. Example 300 of FIG. 3 compares
delay-based versus fanout-based subgraph extraction. As
shown in this figure, path 1 in dotted section 302 is the
longest combinational path with a delay of 10 ns. But the
register associated with path 1, specifically r;, is utilized by
two (subsequent) consumer nodes, v, and v,. Merging the
two nodes into the first clock cycle would increase register
usage, being not beneficial. In comparison, although path 2
in dotted section 304 has a shorter delay of 9 ns, its
associated register r, only has a single consumer (node vyg),
which offers greater flexibility in its positioning. Essentially,
the more a register is being utilized, the more critical it
becomes, reducing the benefit of repositioning it. Therefore,
the following metric is introduced to drive the subgraph
extraction process:

bi D (ecp i, vp) ®
o Pleoun(ry(v)) I,
S (vy, Vj) = Z 1 o
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[0051] Assuming v; produces a total of k results, r(v;)
denotes the s-th result of v;. The function bit_count quanti-
fies the significance of r (v,), while num_users captures the
degree to which r(v;) is utilized. D(cep(v;, v))/T,,; serves as
a tie-breaker, and is ensured to be less than 1.0 in any valid
schedule. Suppose m subgraphs are extracted in each itera-
tion. Here, ISDC sorts all combinational paths from the
previous schedule in descending order of S(v;, v;) and
extract the top m paths. Given that num_users can be viewed
as the HLS IR level fanout, this approach is thus termed the
fanout-driven strategy.

[0052] The importance of introducing feedback is to cap-
ture the low-level optimizations in downstream tools. To
better capture inter-node optimizations, ISDC expands the
paths identified above to “cones” and “windows”. Here, a
cone is defined as a set of nodes at the HLS IR level with
multiple input nodes (leaves) and a single output node (root).
A cone must adhere to the following properties: (1) Each
path from any primary input (PI) of graph G to root passes
through a leaf; and (2) For each leaf, there exists a path from
a PI to root that passes though that specific leaf and bypasses
any other leaves. To expand a given path between nodes v;
and v; into a combinational cone, ISDC uses a depth-first
search (DFS) algorithm that recursively identifies the pre-
ceding nodes of v; until it encounters the boundary nodes of
clock cycles or the PI of the entire graph G.

[0053] A window is derived by merging multiple cones
that have different roots but share an identical or overlapping
set of leaves. While a window still adheres to the properties
above, it extends them to the case of multiple output nodes.
FIG. 4A shows an example of expanding path 2 in FIG. 3 to
a cone, here subgraph (3), while FIG. 4B shows a window,
here subgraph (4). The cone/window subgraphs can capture
the most relevant inter-operation optimizations, while also
being sufficiently self-contained to mitigate the potential of
over-optimization.
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Delay Updating

[0054] In the initial SDC scheduling phase, ISDC employs
the method outlined above to calculate the critical path delay
for every node pair and set timing constraints. To integrate
the low-level feedback into the subsequent SDC formula-
tions, ISDC maintains a matrix D[n][n] that holds the
estimated critical path delay of all node pairs, where n
denotes the total node count. In each iteration, ISDC updates
D[n][n] according to the process shown in Algorithm 1 (see
FIG. 5) once the subgraph delays are fed back from down-
stream tools. Lines 1 to 9 of Algorithm 1 initialize D[n][n]
with the naive delay estimations. Subsequently, lines 10 to
14 traverse all evaluated subgraphs. For each subgraph g, the
delay of all node pairs covered by g is updated with D(g), but
only if D(g) is shorter than the original delay estimation.
Consequently, ISDC maximally leverages the information
obtained from each subgraph evaluation, thereby accelerat-
ing the iterative convergence.

SDC Reformation

[0055] Upon the updated delay matrix D[n][n], all the
timing constraints discussed above can be reformulated to
construct an updated LP problem. Essentially, this reformu-
lation can be viewed as an all-pairs shortest path problem,
optimally solved by the Floyd-Warshall algorithm with a
complexity of O(n®). To mitigate this cubic complexity, an
O(n?) algorithm is presented as Algorithm 2 (FIG. 6), which
provides a sufficiently accurate delay estimation. An esti-
mation accuracy study is presented below. With regard to
Algorithm 2, lines 2 to 12 traverse all nodes of graph G in
a topological order, ensuring that a node is processed only
after all its operand nodes. For a specific node v, lines 4 to
8 calculate the delay from all nodes to v by adding v’s
individual delay to the delay from all nodes to v’s operand
nodes. Lines 7 to 8 ensure only the critical path delay is
recorded. Subsequently, lines 9 to 12 update D[n][n] only if
the newly calculated delay is shorter.

[0056] After this topological order traversal, lines 13 to 16
of Algorithm 2 reprocess all nodes, but in a reversed
topological order. This step aims to identify the complemen-
tary paths that cannot be identified by the initial topological
order traversal. Finally, lines 18 to 21 set the timing con-
straints for the LP problem based on the recalculated D[n]
[n]. By reformulating the SDC problem, ISDC prunes the
over-conservative timing constraints that were erroneously
set in the previous SDC scheduling. This enlarges the
updated LP problem’s search space, naturally leading to a
refined scheduling result.

Testing and Evaluation

[0057] The ISDC approach was implemented on top of an
industrial-strength open-source HLS tool, XLS, which uses
SDC scheduling as the default scheduling algorithm. Logic
synthesis used Yosys (as described by C. Wolf in “Yosys
open synthesis suite”, 2016) and OpenSTA (as described in
“OpenSTA: Parallax static timing analyzer”, 2023) for logic
synthesis and STA. The open-source SKY 130 (as described
in “SkyWater open source PDK”, 2023) was used as the
target technology library.

[0058] A set of ablation studies was performed on an
XLS-based HLS design to demonstrate the efficacy of the
fanout-driven and window-based subgraph extraction strat-

cgy.
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[0059] For the fanout-driven strategy, FIGS. 7A-C show
the comparisons between the delay-driven (“dd”) and
fanout-driven (“fd”) strategies. 30 iterations of scheduling
were performed under 400 MHz clock frequency, where 4
(FIG. 7A), 8 (FIG. 7B), or 16 (FIG. 7C) subgraphs were
extracted per iteration. The results indicate that the fanout-
driven strategy converged notably faster than its delay-
driven counterpart, particularly in the initial iterations. Fur-
thermore, it consistently achieved lower register usage
across all three cases.

[0060] For the window-based strategy, FIGS. 8 A-C show
the comparisons among the path, cone, and window-based
strategies for 4 subgraphs (FIG. 8A), 8 subgraphs (FIG. 8B),
or 16 subgraphs (FIG. 8C) were performed for each itera-
tion. Notably, the cone/window-based strategies demon-
strated faster convergence than the path-based approach,
achieving a reduced register usage. The path-based strategy
may become trapped in local minima. In contrast, the
cone/window-based strategy can overcome those points,
achieving further improvements in subsequent iterations.
While the cone and window-based strategies exhibit similar
performance, the results suggest a slight edge for the win-
dow-based approach. Meanwhile, as expected, ISDC con-
verged faster with the extraction and evaluation of more
subgraphs per iteration.

[0061] Benchmarking was performed on 17 XLS-based
HLS designs to evaluate ISDC. The benchmarks encom-
passed existing algorithms like crc32, as well as datapaths
from industrial SoCs, including a machine learning proces-
sor (ML-core) and a video processor (video-core). In the
evaluation, the fanout-driven and window-based strategies
were used, evaluating 16 subgraphs per iteration in parallel.
A total of 15 iterations were performed on each benchmark.

[0062] Table 1 (FIG. 9) shows the evaluation results,
including metrics such as the target clock period, post-
synthesis slack, number of pipeline stages, number of reg-
isters, and scheduling runtime. The bottom of the table
shows results according to geometric mean and according to
ratio. By default, the target clock period was set to 2500 ps
to constrain the scheduling. If an operation in a benchmark
exhibited an individual delay exceeding 2500 ps, the target
clock period was adjusted to 5000 ps. On average, ISDC
achieved a 28.5% lower register usage compared to the
original SDC scheduling. This came at the cost of an average
40.8x increase in scheduling runtime. For instance, for the
largest benchmark, sha256, ISDC spent around 54.7 minutes
to converge, which was 11.5x longer than the original
SDC’s 4.7 minutes. Among all benchmarks, ISDC utilized
39.1% additional slack in average to make room for the
reduction in register usage. However, there are several
counter examples, such as ML-core datapathO opcode0,
which exhibited a slight increase in slack but still achieved
a register usage reduction.

[0063] To evaluate ISDC’s delay estimation accuracy, its
estimation was analyzed across the 17 benchmarks from
Table I and compared with the original SDC. FIG. 10 shows
the results of the delay estimation accuracy comparison. In
the first iteration, without low-level feedback, ISDC exhib-
ited the same estimation error as the original SDC. However,
as the iterations progressed, ISDC gradually reduced its
estimation error, ultimately reaching an error of 3.4%. In
contrast, the original SDC’s estimation error increased,
ending at 38.4%. This may be attributed to the fact that as
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the scheduling results are refined, more low-level optimiza-
tions are overlooked by the original SDC.

Process Node Considerations:

[0064] Though real-world benchmarks were used for
evaluation, they were evaluated down-clocked and on an
older open-source industry process node (in particular,
SKY130) to pioneer the methodology. It is expected that the
improvements according to the aspects of the technology
described herein should apply as effectively to more
advanced process nodes and proprietary tools that offer
similar STA report facilities.

Retiming:

[0065] Retiming is a method that repositions registers in
gate-level sequential circuits to optimize performance or
reduce resource usage without altering the overall function-
ality. On the other hand, HLS scheduling operates at higher-
level IRs composed with algebraic operations and explicit
control flows. This provides HLS scheduling with greater
flexibility and larger design space to find more optimized
designs. Furthermore, HLS scheduling preserves the alge-
braic attributes in the generated circuits, paving the way for
robust verification processes, such as logic equivalence
checking. This mitigates the limitations inherent in the
retiming technique.

Runtime:

[0066] A common concern of feedback-guided approaches
is runtime. While the results in Table I demonstrate that
ISDC converges at a practical pace, a more aggressive
strategy was explored using the and-inverter-graph (AIG)
approach to guide the scheduling. AIG is a representation for
logic optimizations. As shown in FIG. 11, which looked at
6,912 different HLS design points, there is a compelling
linear correlation between post-synthesis STA delay and
AIG depth within ABC (which is described by Brayton et al.,
in “ABC: An academic industrial-strength verification tool”,
2010). Thus, according to another aspect of the technology,
the system may bypass time-consuming technology map-
ping and post-synthesis STA, and instead directly use AIG
depth as feedback.

Simultaneous HLS and Logic Optimization:

[0067] In ISDC, the back annotation technique may be
bypassed due to its backend-specific nature and lack of
generalizability. However, to squeeze out an extra bit of
performance from digital circuits in the post-Dennard-scal-
ing era, it can possible to blur the lines between HLS and
downstream processes, such as logic synthesis. Thus,
aspects of the technology may employ a co-optimization of
the two design spaces, such as simultaneous HLS scheduling
and logic optimization.

Additional Example

[0068] FIGS. 12A-D illustrate another example showing
how original pipelined scheduling (e.g., in XLS) can be
altered via ISDC to achieve fewer constraints using a larger
search space to achieve better results that can be used to
design and fabricate circuitry having a desired function. In
particular, FIG. 12A illustrates an example of original pipe-
line scheduling in XL.S. The example shows an unscheduled
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XLS graph with a targeted clock period (here, 10 ns) in the
upper half of the figure. The lower half of the figure shows
the various constraints, as well as the LP objective. These
include define-usage constraints (“Def-use Constraints” in
the figure). These constraints correspond to the scheduled
cycle of a definer of a value that must be equal to or earlier
than the cycle of a user of this value. Otherwise, the schedule
is invalid.

[0069] As shown in FIG. 12A, the path along nodes N1 (3
ns), N4 (6 ns) and N8 (3 ns) exceeds the 10 ns timing
constraint. Thus, as shown in FIG. 12B, a set of three
registers 1200 would need to be inserted to accommodate
the timing constraints.

[0070] In contrast, FIG. 12C illustrates an ISDC approach
for reworking the pipelined scheduling. Here, as illustrated
in the upper half of the figure, a window subgraph g (block
1202) can provide a more efficient and effective solution. In
particular, subgraph g supports a 7 ns timing. If the system
does not have any feedback, it would need to estimate the
latency of subgraph g as 9 ns (3 ns for node 146 ns for node
4). However, with the feedback from downstream tools, they
can provide the system with a more accurate estimation of
subgraph g’s latency, which is actually 7 ns in this example.
The system then can leverage this more accurate information
to refine the scheduling problem Thus, as shown in the
bottom half of the figure, any redundant timing constraints
are removed by the approach. The result of the iterative
process is shown in FIG. 12D. A refined XL.S graph is
illustrated in the upper half of the figure, only a single
register 1206 is needed in the upper portion of the graph. The
lower half of the figure shows that certain of the require-
ments (e.g., cycle_8, lifetime_4, and lifetime_5) were sat-
isfied while also utilizing fewer registers than the original
approach.

Example System

[0071] One example of a system configured to implement
the ISDC technology discussed above is shown in FIGS.
13A-B. In particular, FIG. 13A is a block diagram and FIG.
13B is a functional diagram, of an example system 1300 that
includes a plurality of computing devices 1302, 1304, 1306
and a storage system (e.g., a database) 1308 connected via
a network 1310. System 1300 may also include a fabrication
facility 1312 that is configured to produce circuitry designed
according to the processes described herein. As shown in
FIG. 13B, each of computing devices 1302, 1304 and 1306
may include one or more processors, memory, data and
instructions.

[0072] By way of example, the one or more processors
may be any conventional processors, such as commercially
available central processing units (CPUs), graphical pro-
cessing units (GPUs) or tensor processing unites (TPUs).
Alternatively, the one or more processors may include a
dedicated device such as an ASIC or other hardware-based
processor. Moreover, reference to one or more processors or
processing resources includes situations where a set of
processors may be configured to perform one or more
operations. Any combination of such a set of processors may
perform individual operations or a group of operations,
either sequentially or in parallel. This may include two or
more CPUs, GPUs or TPUs (or other hardware-based pro-
cessors) or any combination thereof. It may also include
situations where the processors have multiple processing
cores. Therefore, reference to one or more processors or
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processing resources does not require that all processors (or
cores) in the set must each perform all of the operations.
Rather, unless expressly stated, any one of the one or more
processors (or cores) may perform different operations when
a set of operations is indicated, and different processors (or
cores) may perform specific operations, either sequentially
or in parallel.

[0073] As shown in FIG. 13B, the memory for each
computing device stores information accessible by the one
or more processors, including instructions and data that may
be executed or otherwise used by the processor(s). The
memory may be of any type capable of storing information
accessible by the processor, including a computing device or
computer-readable medium, or other medium that stores
data that may be read with the aid of an electronic device,
such as a hard-drive, memory card, ROM, RAM, DVD or
other optical disks, as well as other write-capable and
read-only memories. Systems and methods may include
different combinations of the foregoing, whereby different
portions of the instructions and data are stored on different
types of media.

[0074] The instructions may be any set of instructions to
be executed directly (such as machine code) or indirectly
(such as scripts) by the processor. For example, the instruc-
tions may be stored as computing device code on the
computing device-readable medium. In that regard, the
terms “instructions” and “programs” may be used inter-
changeably herein. The instructions may be stored in object
code format for direct processing by the processor, or in any
other computing device language including scripts or col-
lections of independent source code modules that are inter-
preted on demand or compiled in advance. The data may be
retrieved, stored or modified by processor in accordance
with the instructions. The data may also be formatted in any
computing device-readable format. The algorithms, such as
the pseudocode in FIGS. 5 and 6 may be implemented
according to such instructions or programs. Moreover, any
of the methods or processes discussed herein to implement
the ISDC techniques may be implemented according to such
instructions or programs.

[0075] The computing devices may include all of the
components normally used in connection with a computing
device such as the processor and memory described above as
well as a user interface having one or more user inputs (e.g.,
one or more of a button, mouse, keyboard, touch screen,
gesture input and/or microphone), various electronic dis-
plays (e.g., a monitor having a screen or any other electrical
device that is operable to display information), and speakers.
The computing devices may also include a communication
system having one or more wired or wireless connections to
facilitate communication with other computing devices of
system 1300 and/or the fabrication facility 1312.

[0076] The various computing devices may communicate
directly or indirectly via one or more networks, such as
network 610. The network 1310 and any intervening nodes
may include various configurations and protocols including
short range communication protocols such as Bluetooth™,
Bluetooth LE™, the Internet, World Wide Web, intranets,
virtual private networks, wide area networks, local net-
works, private networks using communication protocols
proprietary to one or more companies, Ethernet, WiFi and
HTTP, and various combinations of the foregoing. Such
communication may be facilitated by any device capable of
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transmitting data to and from other computing devices, such
as modems and wireless interfaces.

[0077] In one example, computing device 1302 may
include one or more server computing devices having a
plurality of computing devices, e.g., a load balanced server
farm or cloud computing architecture, which exchange
information with different nodes of a network for the pur-
pose of receiving, processing, and transmitting the data to
and from other computing devices. For instance, computing
device 1302 may include one or more server computing
devices that are capable of communicating with computing
devices 1304, 1306 and the fabrication facility 1312 via the
network 1310.

[0078] The computing devices may be configured to
implement any of the ISDC techniques discussed herein. In
some examples, client computing device 1304 may be an
engineering workstation used by a developer to perform
circuit design and/or other processes for integrated circuit
design and fabrication. Client computing device 1306 may
also be used by a developer, for instance to prepare system
requirements for the integrated circuit or manage the manu-
facturing process with the fabrication facility 1312.

[0079] Storage system 1308 can be of any type of com-
puterized storage capable of storing information accessible
by the server computing devices 1302, 1304 and/or 1306,
such as a hard-drive, memory card, ROM, RAM, DVD,
CD-ROM, flash drive and/or tape drive. In addition, storage
system 1308 may include a distributed storage system where
data is stored on a plurality of different storage devices
which may be physically located at the same or different
geographic locations. Storage system 1308 may be con-
nected to the computing devices via the network 1310 as
shown in FIGS. 13A-B, and/or may be directly connected to
or incorporated into any of the computing devices.

[0080] Storage system 1308 may store various types of
information. For instance, the storage system 1308 may
store one or more ISDC algorithms, netlists, RTL hardware
implementations (e.g., Verilog, System Verilog, etc.) and/or
other integrated circuit requirements. Alternatively or addi-
tionally, it may store the any final circuitry designs that may
be provided for circuit fabrication by facility 1312.

[0081] FIG. 14 illustrates a flow diagram 1400 of a com-
puter-implemented method regarding aspects of the technol-
ogy. At block 1402, this includes creating, by one or more
processors, an initial pipeline comprising a set of nodes. The
initial pipeline corresponds to a function to be implemented
by an integrated circuit according to a set of constraints, in
which adjacent pairs of nodes are each associated with a
corresponding timing constraint. At block 1404, the method
includes performing, by the one or more processors, sub-
graph extraction on the initial pipeline to obtain a set of
combinational subgraphs. At block 1406, the method
includes providing, by the one or more processors, the set of
combinational subgraphs to one or more downstream tools,
in which the one or more downstream tools includes at least
one of a logic synthesis tool, a placement tool or a routing
tool. At block 1408, the method includes obtaining, by the
one or more processors from the one or more downstream
tools, a set of subgraph delays. And at block 1410, the
method includes revising, by the one or more processors
based on the obtained set of subgraph delays, the initial
pipeline comprising the set of nodes to create an updated
pipeline comprising an updated set of nodes, the updated
pipeline corresponding to the function to be implemented by
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the integrated circuit according to the set of constraints, in
which adjacent pairs of the updated set of nodes are each
associated with a corresponding updated timing constraint.
[0082] Although the technology herein has been described
with reference to particular embodiments and configura-
tions, it is to be understood that these embodiments and
configurations are merely illustrative of the principles and
applications of the present technology. It is therefore to be
understood that numerous modifications may be made to the
illustrative embodiments and configurations, and that other
arrangements may be devised without departing from the
spirit and scope of the present technology as defined by the
appended claims.

1. A computer-implemented method, comprising:

creating, by one or more processors, an initial pipeline

comprising a set of nodes, the initial pipeline corre-
sponding to a function to be implemented by an inte-
grated circuit according to a set of constraints, in which
adjacent pairs of nodes are each associated with a
corresponding timing constraint;

performing, by the one or more processors, subgraph

extraction on the initial pipeline to obtain a set of
combinational subgraphs;
providing, by the one or more processors, the set of
combinational subgraphs to one or more downstream
tools, the one or more downstream tools including at
least one of a logic synthesis tool, a placement tool or
a routing tool;

obtaining, by the one or more processors from the one or
more downstream tools, a set of subgraph delays; and

revising, by the one or more processors based on the
obtained set of subgraph delays, the initial pipeline
comprising the set of nodes to create an updated
pipeline comprising an updated set of nodes, the
updated pipeline corresponding to the function to be
implemented by the integrated circuit according to the
set of constraints, in which adjacent pairs of the
updated set of nodes are each associated with a corre-
sponding updated timing constraint.

2. The method of claim 1, further comprising fabricating
the integrated circuit using the updated pipeline.

3. The method of claim 1, further comprising iteratively
repeating the performing, providing, obtaining and revising
steps until a scheduling result satisfies a set of metrics;

wherein in each iteration:

the subgraph extraction is performed on a current
iteration of the updated pipeline to obtain an updated
set of combinational subgraphs;

providing the set of combinational subgraphs com-
prises providing the updated set of combinational
subgraphs to the one or more downstream tools;

obtaining the set of subgraph delays comprises obtain-
ing an updated set of subgraph delays; and

revising the initial pipeline comprises revising the
updated pipeline.

4. The method of claim 1, in which the updated pipeline
achieves a scheduling result that is not achieved by the initial
pipeline.

5. The method of claim 1, wherein the set of combina-
tional subgraphs is less than all the subgraphs for the initial
pipeline.

6. The method of claim 1, wherein each node of the set of
nodes represents an operation to be performed according to
the function to be implemented.
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7. The method of claim 1, wherein the function to be
implemented is associated with a linear programming prob-
lem.

8. The method of claim 7, wherein revising the initial
pipeline to create the updated pipeline includes constructing
an updated linear programming problem.

9. The method of claim 1, wherein revising the initial
pipeline to create the updated pipeline includes removing
redundant timing constraints.

10. The method of claim 1, wherein the set of constraints
comprises timing constraints associated with the set of
nodes.

11. The method of claim 10, wherein the timing con-
straints correspond to a target clock period.

12. The method of claim 1, wherein the set of constraints
are expressed in integer-difference form.

13. The method of claim 1, wherein revising the initial
pipeline to create the updated pipeline includes performing
delay updating of estimated critical path delays for the node
pairs.

14. The method of claim 13, wherein revising the initial
pipeline to create the updated pipeline further includes
reformulating each corresponding timing constraint.

15. A processing system, comprising:

memory configured to store information associated with

fabrication of an integrated circuit; and

one or more processors operatively coupled to the

memory, the one or more processors configured to:

create an initial pipeline comprising a set of nodes, the
initial pipeline corresponding to a function to be
implemented by the integrated circuit according to a
set of constraints, in which adjacent pairs of nodes
are each associated with a corresponding timing
constraint;

perform subgraph extraction on the initial pipeline to
obtain a set of combinational subgraphs;

provide the set of combinational subgraphs to one or
more downstream tools, the one or more downstream
tools including at least one of a logic synthesis tool,
a placement tool or a routing tool;
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obtain, from the one or more downstream tools, a set of
subgraph delays; and

revise, based on the obtained set of subgraph delays,
the initial pipeline comprising the set of nodes to
create an updated pipeline comprising an updated set
of nodes, the updated pipeline corresponding to the
function to be implemented by the integrated circuit
according to the set of constraints, in which adjacent
pairs of the updated set of nodes are each associated
with a corresponding updated timing constraint.

16. The processing system of claim 15, wherein the one
or more processors are further configured to generate an
integrated circuit design using the updated pipeline in order
to fabricate the integrated circuit.

17. The processing system of claim 15, wherein the one
or more processors are further configured to iteratively
repeat the perform, provide, obtain and revise operations
until a scheduling result satisfies a set of metrics;

wherein in each iteration:

the subgraph extraction is performed on a current
iteration of the updated pipeline to obtain an updated
set of combinational subgraphs;

provide the set of combinational subgraphs comprises
providing the updated set of combinational sub-
graphs to the one or more downstream tools;

obtain the set of subgraph delays comprises obtaining
an updated set of subgraph delays; and

revise the initial pipeline comprises revising the
updated pipeline.

18. The processing system of claim 15, in which the
updated pipeline achieves a scheduling result that is not
achieved by the initial pipeline.

19. The processing system of claim 15, wherein revision
of the initial pipeline to create the updated pipeline includes
removal of redundant timing constraints.

20. The processing system of claim 15, wherein revision
of the initial pipeline to create the updated pipeline includes
performance of delay updating of estimated critical path
delays for the node pairs.
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