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Abstract

Efficient execution of deep learning workloads on dataflow architec-
tures is crucial for overcoming memory bottlenecks and maximiz-
ing performance. While streaming intermediate results between
computation kernels can significantly improve efficiency, exist-
ing approaches struggle with inter-kernel correlations, external
memory access management, and buffer optimization. In this work,
we propose StreamTensor, a compiler framework that automati-
cally constructs and optimizes stream-based dataflow accelerators.
StreamTensor introduces a novel iterative tensor type system to
explicitly encode stream layouts, enabling seamless kernel fusion,
buffer allocation, and memory optimization. By systematically ex-
ploring three hierarchical design spaces, including tensor tiling,
kernel fusion, and resource allocation, StreamTensor balances com-
putational intensity, memory efficiency, and data streaming to max-
imize performance. Based on FPGA evaluations on Large Language
Models (LLM), StreamTensor achieves up to 0.76x and 0.64x lower
latency compared to the state-of-the-art FPGA LLM accelerators
and GPUs, and up to 1.99x higher energy efficiency compared to
GPUs, making it a promising approach for scalable dataflow-based
deep learning acceleration.
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1 Introduction
1.1 Dataflow Architecture

Dataflow architecture, as an alternative to Von Neumann-style ar-
chitectures such as the NVIDIA H100 [20] and Google TPUv4 [33],
is increasingly adopted and studied to overcome the memory wall
in emerging Al applications, such as Large Language Models (LLM).
Because of LLMs’ autoregressive nature, the decoding stage is
highly memory-bound, demanding more memory-efficient acceler-
ator architectures. AMD Versal [24], Sambanova SN40L [43], and
IBM AIU [12] are commercial Al accelerators with reconfigurable

“Work was done during an internship at Inspirit IoT, Inc.

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/2025/10

https://doi.org/10.1145/3725843.3762817

Deming Chen
Inspirit IoT, Inc.
University of Illinois Urbana-Champaign
Urbana, Illinois, USA
deming.chen@inspirit-iot.com

_ Kernel0 Kernel1 _ Kernel2
m{omat | [pwaA2 | +{DmA3 | [Dmas | DMAs | [ DMmA7 |

I External Memory I
(a) An accelerator example

L Stream-based Kernel Fusion

Dataflow Accelerator

Kemel2 [T}~ DMA2 |
FIFO6

I External Memory I
(b) A stream-based dataflow accelerator

Module 0
Module 1
Module 2
Module 3
Module 4
Module 5
Module 6

'Converter0;
el _

T ez
)

Data 0 Data 1 Data 2
(c) Schedule of the stream-based dataflow accelerator

Figure 1: Computation pattern of dataflow accelerators.

dataflow architectures; many studies [14, 40, 44] have also demon-
strated the latency and energy efficiency advantages of dataflow
architecture.

Figure 1 shows the typical computation pattern of dataflow ac-
celerators. As shown in Figure 1(b), a dataflow accelerator contains
the following on-chip components:

(1) Kernel: Computes an operator or coarse-grained task (e.g.,
matrix multiply) using a parallel processor (e.g., a systolic array),
and provides stream interfaces for input and output.

(2) Token: Atomic element communicated between kernels.

(3) First-in First-out (FIFO): Holds accumulated stream tokens
to balance different token rates of the producer and consumer,
and avoids deadlock or unnecessary kernel stalls.

(4) Stream Layout Converter: Converts stream layout on-the-fly
to accommodate different computation patterns of producer
and consumer kernels through a local ping-pong buffer.

(5) Direct Memory Access (DMA): Communicates with external
memory, and converts memory-mapped interfaces to stream
interfaces or vice versa.

Note that kernels may be designed using dataflow circuits through
dynamic scheduling [31], or may adopt different dataflow strate-

gies (e.g., input stationary) for efficient on-chip data reuse [17].
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Figure 2: Current paradigm of dataflow accelerator design.

Although using the same terminology, these dataflow concepts are
conceptually orthogonal to the dataflow architecture and accelera-
tors discussed in this paper.

The key idea of dataflow architecture is to stream intermediate
results between kernels through on-chip FIFOs instead of triggering
frequent external memory accesses. For example, in Figure 1(b), the
intermediate results produced by Kernel0 are streamed directly to
Kernell and Converter0 without going through external memory, as
in Figure 1(a). Following the convention proposed in [43], we refer
to enabling streaming between dataflow kernels as stream-based
kernel fusion. Additionally, as illustrated in Figure 1(c), the schedule
of the dataflow accelerator allows Kernell and Converter0 to start
execution before Kernel0 completes. This overlapped execution can
significantly improve both the overall throughput and latency.

1.2 Dataflow Accelerator Programming

Figure 2 shows the current paradigm of dataflow accelerator pro-
gramming. As dataflow accelerators generally fall into two cate-
gories, application-specific accelerators and domain-specific accel-
erators (DSAs), we discuss each separately.

1.2.1  Application-specific Accelerator. In this category, the dataflow
components and schedule are tailored for a single application. Thus,
programming typically refers to the design or generation of archi-
tecture and microarchitecture. Traditionally, Hardware Description
Languages (HDLs), High-level Synthesis (HLS), and meta-HDLs like
Chisel [6] are used for this purpose [13, 19, 49, 63]. More recently,
Accelerator Design Languages (ADLs) have emerged to improve
productivity [15, 23, 53], introducing typing systems and primitives
to describe computation, memory layout, and dataflow schedules.
As shown in Figure 2, existing solutions require manual effort to con-
vert applications into dataflow schedules and components, which
are then passed to HLS, meta-HDL transpilers, or vendor EDA tools
for hardware generation. While ADLs and HLS frameworks incor-
porate Design Space Exploration (DSE) [2, 9, 34, 35, 60, 62], these
efforts focus mainly on optimizing individual kernels.

1.2.2  Dataflow DSA. DSAs are designed to efficiently perform com-
putations for a particular class of applications or a specific domain,
rather than being a general-purpose processor. DSAs are often real-
ized using Coarse-grained Reconfigurable Architecture (CGRA)-like
architectures [24, 40, 43, 44], where on-chip resources are recon-
figured to implement different dataflow designs. Modern DSAs
are programmed using C/C++ primitives [24, 67, 68] or Domain-
specific Languages (DSLs), such as Spatial [35], Halide [46], and
TVM [16], to generate domain-optimized code. As illustrated in
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Figure 2, developers must manually transform applications into
logical components using these DSLs or APIs. Software compilers
then map them to physical resources and generate the final binaries
for on-chip execution. While these DSLs often provide auto-tuning
capabilities for dataflow kernels, their primary focus is on optimiz-
ing individual kernels instead of the entire dataflow application,
leaving substantial performance gains unrealized.

1.3 Pitfalls

1.3.1  Pitfall 1: Inter-kernel Correlation. Prior works [60, 61] show
that inter-kernel correlation can affect accelerator performance.
Since kernels execute in a pipelined manner, their latencies must
be balanced for optimal throughput. Moreover, buffer-connected
kernels need aligned parallelization strategies to avoid inefficient
memory use. However, previous work only considered ping-pong
buffers, which support memory-mapped access. FIFOs are more
restrictive, as data must be pushed/pulled in order. This introduces
the following challenges for each kernel:

(1) Tiling: Choosing tile sizes that enable streaming, minimize local
buffering, and preserve memory efficiency.

(2) Permutation: Reordering loops to reduce memory utilization
during data streaming.

(3) Vectorization: Selecting unrolling strategies to balance latency
and improve streaming efficiency.

These decisions are interdependent across kernels, making global
optimization challenging for analytical models or manual design.

1.3.2  Pitfall 2: External Memory Access. Most existing compilers [2,
8, 60—62, 65] assume that all data fits on-chip, which is unrealistic
for large applications. When off-chip memory is involved, each
DMA must address the following issues:

(1) How to overlap memory access with kernel execution?
(2) What data layout best matches the streaming pattern?
(3) How to pack/vectorize data to maximize bandwidth?

These require nontrivial pattern analysis and are error-prone
when handled manually. DMA design is also tightly coupled with
kernel tiling and scheduling, compounding the complexity.

1.3.3  Pitfall 3: Stream-based Kernel Fusion. The goal of stream-
based kernel fusion is to stream all intermediate results on-chip,
limiting external memory use to inputs and outputs. However,
producer and consumer kernels often have incompatible stream
layouts due to different computation patterns. This requires:

(1) Checking layout compatibility between kernels.
(2) Generating minimal on-the-fly stream layout converters.
(3) Ensuring the converter fits within available on-chip memory.

These steps involve complex pattern analysis and require a global
view of the system, making manual solutions impractical.

1.3.4  Pitfall 4: FIFO Sizing. As shown in Figure 1, if Kernell is
slower than Converter0, FIFOs may overflow or underflow, leading
to a stall cascade and eventual deadlock. Though dynamic sched-
uling solutions exist [32], coarse-grained accelerators still rely on
manual sizing [14, 15], which does not scale to a large number
of FIFOs. A recent automated approach [30] uses simulation to
determine FIFO sizes, but it is time-consuming and lacks scalability.
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Figure 3: Proposed paradigm of dataflow accelerator design.

1.4 Our Proposal

Due to the pitfalls described in Section 1.3, the current paradigm
shown in Figure 2 is difficult to scale up to large dataflow accelera-
tors. Therefore, we propose a shift in the design paradigm shown in
Figure 3. We do not advocate for full automation, as ADL/HLS/HDL
or DSLs remain essential for designing individual dataflow kernels,
such as local buffers and vectorization. However, once individual
kernels are designed or generated, we argue that compilers should
automatically generate the dataflow schedule, assemble the ker-
nels into an application-level dataflow accelerator, and resolve the
pitfalls identified in Section 1.3 algorithmically. This is analogous
to the GPU software ecosystem, where DSLs like CUDA and Tri-
ton [54] are used to design or auto-tune individual GPU kernels,
while kernel assembly and scheduling are handled automatically
by compilers, resulting in a programming paradigm that is both
efficient and scalable.

In this spirit, we propose StreamTensor, a compiler that enables
automatic tensor streaming in dataflow architectures. This paper de-
scribes how each pitfall is addressed in a systematic and hierarchical
manner. As a pioneering work, StreamTensor proposes algorithmic
solutions for each challenge and demonstrates their effectiveness
through large benchmarks. While these solutions may not be op-
timal, they clearly expose well-defined optimization subproblems
and enable co-optimization opportunities across different design
spaces. Overall, this paper makes the following contributions:

(1) We propose StreamTensor, the first PyTorch-to-device dataflow
compiler that automatically generates stream-based dataflow
accelerators and their corresponding runtime systems.

(2) We propose an iterative tensor (itensor) type that systemat-
ically encodes the stream information for the first time. This
typing system forms the foundation for stream-based kernel
fusion and dataflow component generation, improving the scal-
ability and productivity of dataflow accelerator design.

(3) We propose three design spaces, including tensor tiling space,
kernel fusion space, and resource allocation space, that cover
the sophisticated design space of dataflow architecture in an
algorithmic and hierarchical manner. We further propose an
exploration algorithm for each design space to reduce resource
utilization and improve latency and throughput.

(4) We propose a piecewise function-based token behavior model
that transforms the dataflow FIFO sizing problem of dataflow
accelerators into a scheduling problem. We further propose
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a linear programming (LP) algorithm to solve this problem,
reducing resource utilization while avoiding deadlock.

(5) We evaluate StreamTensor on FPGA platforms with LLMs and
observe up to 0.76x and 0.64x lower latency compared to the
state-of-the-art FPGA LLM accelerators and GPUs, and up to
1.99x higher energy efficiency compared to GPUs.

2 StreamTensor Framework

StreamTensor is a compilation framework designed to transform
PyTorch models into optimized dataflow implementations. It is
built upon the MLIR [36] compilation framework. The overall ar-
chitecture of StreamTensor is depicted in Figure 4. The compilation
process begins with a PyTorch model from Torch-MLIR [55] and
proceeds through several stages. Initially, tensor operations are
converted into a structured Intermediate Representation (IR) us-
ing MLIR’s built-in Linear Algebra (Linalg) operations. This IR
is then optimized by MLIR’s Linalg passes like element-wise op-
eration fusion. StreamTensor subsequently applies Design Space
Exploration (DSE) algorithms to determine optimal tiling strate-
gies, considering factors such as tile sizes, unrolling factors, and
permutations based on computational patterns. The Linalg IR is
then transformed into a dataflow IR, where computations are or-
ganized as hierarchical tasks. All dataflow components, including
DMAs, stream layout converters, and FIFOs, are generated during
this stage. Critical optimizations are also performed here, such as
stream-based kernel fusion to minimize external memory access
and FIFO sizing to balance producer-consumer executions. In the
final stages, StreamTensor generates hardware-specific code and
a host runtime. StreamTensor handles memory allocation, stream
connectivity, and directive materialization, which allows vendor
compilers like HLS to generate the target dataflow architectures.
Concurrently, it produces host runtime code that manages data
transfer, kernel execution, and synchronization between the host
CPU and the dataflow accelerator.

3 Intermediate Representation

3.1 Typing System

StreamTensor introduces a typing system to enable efficient verifica-
tion and optimization of the IR. Through StreamTensor’s dedicated

type and operation verifiers, the typing system helps ensure the
IR’s validity after any transformation pass is applied.

3.1.1  Motivation. Traditionally, tensor type encodes a data type
and a list of integers representing its shape [16, 28, 36, 46]. Tensors
can be accessed in a memory-mapped manner, e.g., a slice can be ex-
tracted or inserted based on offsets and its shape. However, dataflow
kernels communicate via FIFOs, which enforce a strict access order
and follow a streamed access pattern rather than a memory-mapped
one. Consequently, traditional tensor types may fail to ensure cor-
rectness in dataflow communication. Even when a producer and a
consumer share the same tensor type, the stream access order may
remain ambiguous, causing unintended behaviors. For example,
in Graphene [28], the tensor type only encodes memory-mapped
layout. As a result, a mismatch between a producer’s row-major
stream generation and a consumer’s column-major expectation,
when both operate on the same tensor type, leads to incorrect data
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from the same tensor with type tensor<8x8xf32>. To convert a
tensor to an itensor, we first partition it into identical tensor slices
or vectors. For example, in Figure 5(b), the tensor is partitioned
into eight tensor slices of shape 4x2. These slices are then accessed
iteratively within a defined iteration space, typically nested loops.
The iteration space is defined by two lists: tripcounts and step
sizes. In Figure 5(b), the iteration space is [4,2]*[2,4], which
produces iteration indices [0,0], [0,4], [2,0], [2,4], etc. The
mapping from iteration space to data space is specified by an affine

interpretation and logical corruption. Therefore, although existing
solutions are sufficient for Linalg-level optimizations like tiling,
they are error-prone and unscalable for generating dataflow com-
ponents and applying dataflow optimizations.

3.1.2  lterative Tensor Type. To address this, we propose a new
itensor type that explicitly encodes stream layout information,
making type-based verification and optimization both possible and
efficient. Figure 5 shows three examples of itensors converted
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Table 1: Iterative tensor (itensor) operations.

Operation

Operands

Results

Description

itensor_empty

result (itensor)

A placeholder representing an empty itensor.

itensor_instance

result (itensor)

An instance of itensor that will be lowered to a FIFO.

itensor_read

source (itensor)
init (tensor)

value (any)

Read (pull) value from itensor source. Operand init is the destination to
store value when value is tensor type.

itensor_write

value (any)
dest (itensor)

result (itensor)

Write (push) value into itensor dest (destination). itensor result is the
written/pushed itensor dest.

itensor_cast

source (itensor)

result (itensor)

Cast from source to result without changing stream layout.

itensor_
reassociate

source (itensor)

result (itensor)

Reassociate the element shape and/or iteration space of source into result.
Typically lowered from tensor expand_shape or collapse_shape.

itensor_
converter

source (itensor)

result (itensor)

Convert stream layout from source to result with a local ping-pong buffer.
Typically generated during dataflow kernel fusion.

itensor_chunk

results ([itensor])

Chunk source into variadic results. Lowered from tensor chunk.

Concat variadic sources into result. Lowered from tensor concat.

itensor_concat sources ([itensor]) result (itensor)

(

source (itensor)
(
(

itensor_fork source (itensor) results ([itensor])

Fork source into variadic number of duplicated results.

itensor_join sources ([itensor]) result (itensor)

Join variadic number of sources into result through round-robin.

map—for example, (d@,d1)->(d1,d®) in Figure 5(b), which trans-
poses the iteration indices. Thus, the data access indices become
[0,0], [4,0], [0,2], [4,2], etc., reflecting this transposition as
shown in Figure 5(b). In itensor, tensor slices can be accessed mul-
tiple times, with the pattern explicitly encoded in the iteration map.
For instance, in Figure 5(c), the iteration space is [4,2,2]%[2,1,4]
and the iteration map is (d@,d1,d2)->(d2,d@), where dimension
d1 does not correspond to any data dimension. As d1 iterates from
0 to 1, all less significant dimensions (like d2) are reiterated. Conse-
quently, the corresponding data dimensions (e.g., row dimension)
are also re-accessed, producing indices like [0,0], [4,0], [0, 0],
[4,0], [0, 2], etc., for tensor slices of shape 4x2. By encoding the
element shape, iteration space, and iteration map in the itensor
type, the stream pattern of a dataflow kernel can be uniquely deter-
mined. When the itensor types of a producer and consumer match,
streaming communication can be safely established between them
(Casel of Figure 5). Otherwise, a stream layout converter must be
inserted in between (Case2 of Figure 5), and the minimal ping-pong
buffer size for layout conversion can be analytically inferred from
the itensor types. The details of layout converter generation will
be discussed in Section 5.2.1. Due to the lack of stream informa-
tion, existing tensor-based typing systems are not sufficient for
stream-based kernel fusion, limiting their usability in stream-based
dataflow optimizations.

3.1.3  Stream Type. In traditional tensor compilers, high-level ten-
sor IR must be bufferized into a low-level memory/buffer IR to
enable low-level optimizations and code generation. Following this
convention, we propose a stream type, which is lowered from
itensor type during bufferization. Unlike immutable itensor ob-
jects, stream objects represent hardware FIFOs and support mu-
tation through operations such as stream reads and writes. The
stream type encodes only the data type and FIFO depth, while the
stream layout information is stripped during bufferization. As a
result, dataflow component generation and optimization must be
completed at the itensor level IR. After bufferization, the stream
IR is reserved for lower-level hardware/runtime optimizations and
code generation.

3.2 Operations

Built upon the typing system in Section 3.1, StreamTensor in-
troduces itensor and stream operations to represent different
dataflow behaviors. Additionally, structure operations are intro-
duced to represent the multi-level hierarchy of a dataflow accelera-
tor, and are shared by both itensor and stream-level IRs.

3.2.1 lIterative Tensor Operations. Table 1 lists the complete set
of operations at the itensor level. Overall, these operations are
self-explanatory; we highlight those whose semantics are less obvi-
ous. itensor_write can be conceptually understood as writing or
pushing an element into a FIFO. It is a destination-carried opera-
tion, where the destination is an itensor passed through a dest
operand. For example, iteratively writing the itensor in Figure 5(b)
(referred to as itensor (b)) can be expressed as:

%empty = itensor_empty() : itensor(b)
%res@ = scf.for @ to 8 step 2 iter_args={%argd = %empty} {
%resl = scf.for @ to 8 step 4 iter_args={%argl = %argd} {
%value = ... : tensor<4x2xf32> // %value is defined
%output = itensor_write %value into %argl
scf.yield %output : itensor(b)
} : itensor(b)
scf.yield %resi
} : itensor(b)

: itensor(b)

Here, scf is an MLIR built-in dialect for structured control flow,
including for loops. scf. for is also destination-carried, where
%empty is passed as an argument and iteratively pushed through an
itensor_write. Eventually, %res@ is returned as the final result.
In contrast, itensor_read represents pulling an element from a
FIFO. For example, reading itensor(b) can be expressed as:

%source = ... : itensor(b) // %source is defined
scf.for @ to 8 step 2 {
scf.for @ to 8 step 4 {
%empty = tensor.empty() : tensor<4x2xf32>
%value = itensor_read %source init %empty :
. = ... %value ... // %value is used

33
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Table 2: Stream (stream) and buffer operations.

Operation Operands Results

Description

itensor_to_stream source (itensor) result (stream)

Convert itensor source to result. Must be eliminated during bufferization.

stream_to_itensor  source (stream)

result (itensor) Convert source to itensor result. Must be eliminated during bufferization.

stream - result (stream)

A FIFO with a specified depth. Typically lowered from itensor_instance.

stream_read source (stream) value (any)

Read (pull) value from source FIFO. Typically lowered from itensor_read.

. value (any)
stream_write -
dest (stream)

Write (push) value into dest FIFO. Typically lowered from itensor_write.

stream_cast source (stream) result (stream)

Cast from source to result without changing the stream layout.

buffer - result (memref) A ping-pong (double) buffer. Typically lowered from tensor_instance.
Table 3: Structure operations.
Operation Operands Results Region  Description
Contains a graph of tasks. tensor sources and results are implicitly converted
kernel sources ([tensor]) results ([tensor]) Isolated to/from itensor at the boundary, which will be materialized as DMA tasks.
inits results Contains a graph of operations. Can be nested to form a multi-level dataflow.
task . . Transparent . . . o
([itensor/tensor]) ([itensor/tensor]) Outputs are written/pushed into inits. results are the updated inits.
ield outputs ) . Terminator of kernel or task. Yields outputs to the outside of the enclosing
Y ([itensor/tensor]) kernel or task region.

itensor_converter contains a local ping-pong buffer that per-
forms on-the-fly stream layout conversion. For example, in Casel
of Figure 5, the source and target share the same itensor type
and can connect via a FIFO. In Case2, they differ, so a converter
must be inserted. A minimum 8x2 ping-pong buffer is required to
accommodate the stream layouts. While the source writes to the
ping buffer, the target reads the pong buffer twice, then they swap.

3.2.2  Stream Operations. Table 2 lists the operations at the stream
level. These are mostly self-explanatory; we highlight the key dif-
ference from itensor operations. As discussed in Section 3.1.3,
stream objects are mutable, and destination-carried semantics are
no longer used. A FIFO push and pull can be written as:
%stream = stream() : stream<f32, depth: 32>
scf.for @ to 8 step 2 {
scf.for @ to 8 step 4 {
%value = ... : f32 // %value is defined
stream_write %value into %stream :
33
scf.for @ to 8 step 2 {
scf.for @ to 8 step 4 {
%value = stream_read %stream :
. = ... %value ... // %value is used

33

Note that the same %stream is used throughout without creating
new duplicates, unlike the destination-carried style of itensor.
stream IR is more efficient for code generation, but complicates
define-use analysis. Hence, itensor is preferred for high-level
dataflow optimization. The correctness of stream operations is
guaranteed by construction as they are lowered from itensor op-
erations, which are strictly verified by the itensor typing system.

3.2.3  Structure Operations. While itensor and stream operations
model behavior, structure operations model hierarchy. Table 3 lists
all the structure operations in StreamTensor. The kernel operation

represents a dataflow kernel (as in Figure 1), containing a graph
of task operations. It takes tensors as inputs/outputs, which are
converted to/from itensors at the boundary. These implicit con-
versions act as DMAs. Intra-kernel uses on-chip streaming, while
inter-kernel uses external memory. For example:

%source = ... : tensor<8x8xf32> // %source is defined
%result = kernel(%arg : itensor<b> =
%source : tensor<8x8xf32>) {
... = ... %arg ... // %arg is used
%output = ... : itensor<c> // %output is defined

yield %output : itensor<c>
} . tensor<8x8xf32>

By converting at the kernel boundary, we avoid explicit DMA
handling during kernel fusion, improving transformation efficiency
and analyzability. In contrast, the task operation is transparent and
does not convert types at its boundary. It represents a dataflow task
within a kernel and may be nested for hierarchical dataflow designs.
At the itensor level, task is destination-carried where outputs
are written into destinations via inits, improving the efficiency of
define-use analysis. For example:
%empty = ... : itensor(b)
%result = task @example inits={%arg = %empty} {

%value = ... : tensor<4x2xf32> // %value is defined

%output = itensor_write %value into %arg :

yield %output : itensor(b)
} : itensor(b)

After lowering and bufferization, the same code becomes:
%stream = stream() : stream<f32, depth: 32>
task @example {

%value = ... : f32 // %value is defined

stream_write %value into %stream :

We can observe that task combines both itensor and stream
operations, making it a unifying structure abstraction across both
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Figure 6: Linalg tiling, Linalg to dataflow conversion, and dataflow kernel fusion. A solid arrow indicates an operation on the
left is transformed into the operation on the right, whereas a dashed arrow indicates an operation that remains unchanged.

IRs that serve different levels of dataflow optimizations. Eventually,
all dataflow tasks are lowered to MLIR built-in call and func
operations for code generation.

4 Compilation Pipeline

Building on the type system and operations, we introduce a com-
pilation pipeline that compiles Linalg IR into hardware imple-
mentations and a corresponding runtime. All compilation passes
are shown in Figure 4. In this section, we focus on the Linalg-to-
dataflow conversion, dataflow kernel fusion, and dataflow optimiza-
tions that are unique and essential to understanding the compiler.

4.1 Linalg to Dataflow

Figures 6(a)-(c) illustrate the Linalg-to-dataflow conversion pro-
cess. The original Linalg operations (Figure 6(a)) are first tiled into
Figure 6(b), where scf.fors represent the loop nests for tiling.
In each iteration, extract_slices extract input tensor tiles to
feed into the tiled Linalg operation. After the operation produces
output tiles, insert_slices insert them back into the full tensor.
Then, each tiled loop nest is converted into a kernel operation in
place as shown in Figure 6(c). The input and output tensors are
converted into/from itensors at the boundary of kernels. The
itensor types are inferred from:

(1) The nested scf. for loops — iteration tripcounts and step sizes
define the itensor iteration space.

(2) The extract_slice and insert_slice operations’ offsets and
sizes — offsets define the iteration mapping, while sizes define
the element shape. For example, offsets [%iv2, %iv@] result
in the iteration map (d@,d1,d2)->(d2,de).

After conversion, extract_slice and insert_slice operations
are replaced with itensor_read and itensor_write operations,
respectively. The resulting scf. for loop nest is wrapped in a task
to form a single-level dataflow hierarchy: a dataflow kernel contain-
ing a dataflow task. By converting the Linalg semantics to dataflow,
we open opportunities for subsequent dataflow-oriented transforms
and optimizations.

4.2 Dataflow Kernel Fusion

After all tiled Linalg operations are converted to dataflow kernels,
all these kernels initially communicate via traditional tensors,
which are eventually stored in external memory. To reduce this
communication overhead, StreamTensor applies stream-based ker-
nel fusion. Figures 6(c)-(d) show this process. To fuse Kernel0 and
Kernell, we first compare the output itensor type of Kernel0 with
the input itensor type of Kernell. As described in Section 3.1.2,
if the types match, we can directly fuse the kernels. If not, we in-
sert a stream layout converter as shown in Figure 6(d). The fused
kernel comprises two tasks and a converter, all communicating
via itensors that will be lowered to on-chip stream FIFOs. The
itensor typing system enables any dataflow kernels to be fused
by design at the cost of potential on-chip memory utilization for
converters. In Section 5.2, we will discuss the exploration of kernel
fusion space given memory constraints.

After fusion, StreamTensor applies additional optimization passes
to improve the efficiency of external memory access. In particular,
tensor pack and unpack operations are inserted before and after
the kernel to convert between default and tiled memory layouts for
burst memory access. For example, with a tiling size of [16,16] ona
64x64 tensor, the packed tensor has shape 4x4x16x16. To maximize
the usage of external memory bandwidth, StreamTensor widens
the tensor with vectors. For instance, with 512-bit DDR or HBM
and uint8 elements, grouping 64 elements into vector<64> fully
utilizes the bandwidth. In Figure 6, the packed tensor is widened
to shape 4x4x2x2xvector<8x8>. Note that pack and widen opera-
tions are eventually lowered to runtime operations on the host CPU,
which prepares data for the accelerator and causes some latency
and memory overhead. However, for static tensors (e.g., pre-trained
parameters), pack and widen can fuse directly into these tensors,
eliminating any runtime costs. For dynamic tensors (e.g., activa-
tions), pack and widen operations can be folded with their unpack
and unwiden counterparts from the preceding layer via effective
Linalg tiling space exploration. As a result, the pack and widen op-
erations, being necessary only for the model’s inputs and outputs,
contribute negligible memory and latency overhead at runtime.
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4.3 Dataflow Optimization

4.3.1 Materialization. Figures 7(a) and (b) illustrate the material-
ization process for converters and DMAs. Materialization involves
transforming a high-level dataflow component into its low-level
implementation, typically scf. for loop nests containing tensor
and itensor operations. Initially, converters are represented by
itensor_converter, while DMAs are implicitly handled via tensor
to or from itensor conversions at kernel boundaries. This ab-
straction facilitates kernel fusion and converter optimization. For
instance, redundant converters generated for multiple consumers of
a producer can be removed using MLIR’s Common Sub-expression
Elimination (CSE), which becomes harder after materialization.
In contrast, after materialization, all dataflow components are ex-
pressed as nested tasks, making further dataflow optimizations
efficient and accessible. For converters, as shown in Figure 7(a), Con-
verter0 contains two scf. for loop nests connected with a 16x64
ping-pong buffer. These two loop nests are wrapped by a shared
parent scf. for loop to iterate through the original full 64x64 ten-
sor. Therefore, the 16x64 ping-pong buffer is reused four times,
effectively reducing on-chip memory resource utilization by a fac-
tor of four. In Section 5.2, we will discuss how the ping-pong buffer
shape and shared loops are inferred from itensor types.

For DMAs, as shown in Figure 7(a), the input type conversion
from tensor<4x4x2x2xvector<8x8>>to itensor<16x16...> in-
dicates a DMA that will: 1) load 4x4x2x2 times vector<8x8> data
from external memory; 2) store this data in a 16x16 ping-pong
buffer to hide external memory access latency; and 3) push the data
to a FIFO with a layout encoded in the itensor type. In Figure 7(b),
we observe that DMAO is automatically generated to implement
these three behaviors using scf.for loop nests. Note that our
itensor-based typing system encodes all the converter and DMA
information. This is a capability that traditional tensor types lack,
limiting their utility in dataflow component generation.

4.3.2 lIterative Tensor Folding. Figures 7(b)-(c) show the itensor
folding. Suppose we have an itensor_write in DMA( and an
itensor_read in Kernel0, connected via a FIFO. These represent
two separate local buffers connected by streaming. By folding, we
eliminate the FIFO and merge the two buffers. This optimization
can reduce on-chip memory utilization while improving the overall
latency by increasing the overlap between kernels. As shown in Fig-
ure 7(c), the fetched tile is directly passed to the 1inalg.generic
op in Kernel0, eliminating redundant buffering and communication.
itensor folding requires an exact match in memory access patterns
between producer and consumer. This makes it more restrictive
than stream-based kernel fusion, which can be applied between any
dataflow kernels. Consequently, we implement itensor folding as
an additional optimization upon already fused kernels.

4.3.3 lIterative Tensor Vectorization. As dataflow kernels often run
in parallel, we must vectorize dataflow FIFOs to provide sufficient
bandwidth. Figures 7(c)-(d) show the vectorization of an itensor
into vector<2x4>. On the DMAO0O+Kernel0 side, the itensor_write
becomes a loop with transfer_read (from the buffer) followed
by itensor_write (to the FIFO). On the Converter0 side, similar
transformations are applied for reading. This process aligns FIFO
bandwidth with the parallelism of the dataflow kernel.

5 Design Spaces

To generate realizable and optimized accelerators, we must config-
ure the compilation pass parameters properly. As shown in Figure 4,
we divide the overall design space into three sub-spaces: Linalg
tiling space, kernel fusion space, and resource allocation space.

5.1 Linalg Tiling Space
The Linalg tiling space determines tiling factors, unrolling factors,

permutation strategies, and input/output vectorization for each
dataflow kernel. In StreamTensor, this space is represented by a
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Algorithm 1 Pseudo code of stream layout converter generation

Algorithm 2 Pseudo code of kernel fusion exploration

Require: src, Source itensor type; res, Result itensor type

Ensure: bufShape: Shape of the ping-pong buffer

Ensure: beforeLoop: Loop index where the ping-pong buffer is inserted
1: bufShape « [], beforeLoop < 0
2: sharedLoops < [] > Indices of loops shared by src and res
3: for dim « 0 to src.rank() — 1do

if src.elementSize(dim) # res.elementSize(dim) then break

srcExpr « src.iterMap|dim]

resExpr « res.iterMap|dim]

if both Exprs are dimensions with same position then
bufShape.append(src.elementSize(dim))
sharedLoops.append(srcExpr.pos)

10: beforeLoop « beforeLoop + 1

11: else break

12: while any loop € sharedLoops where loop > beforeLoop do

13: bufShape.pop(), loop «— sharedLoops.pop()

14: if loop # —1 then beforeLoop « beforeLoop — 1

4
5
6:
7
8
9

15: bufShape.append(src.shape|bufShape.size() :])
16: return {bufShape, beforeLoop}

graph of Linalg operations, with properties such as loop trip counts,
step sizes, and loop types (reduction or parallel) annotated on each
node. The results of the exploration are also written back to this
graph to configure transformation passes.

For tiling, a hyperparameter default_tile_size is exposed
to users and applied across all dimensions of all kernels. For un-
rolling, we develop an intensity-aware algorithm, which iteratively
selects the kernel with the longest latency through a max-heap
and increases its unroll factor until a user-defined hyperparameter
overall_unroll_size is reached. This approach balances kernel
latencies to improve throughput. Once unroll sizes are determined,
vectorization factors are inferred by analyzing the loop iteration
space and tensor shapes. Permutation is handled by a heuristic
that moves reduction loops outward while keeping parallel loops
innermost, reducing initiation intervals (II) of pipeline loops. In
StreamTensor, the hyperparameters of the Linalg tiling space are
automatically explored through a blackbox optimizer, Optuna [4],
with the feedback from dataflow kernel fusion results.

5.2 Kernel Fusion Space

As described in Section 4.2, kernel fusion enables streaming be-
tween kernels. If the producer and consumer have different i tensor
types, a converter must be inserted. The exploration of the Linalg
tiling space determines all data layouts and shapes, thereby fixing
the itensor types at the interfaces of all dataflow kernels. Conse-
quently, the memory overhead of fusing any pair of kernels is also
established. Due to limited on-chip memory, fusing all kernels is
generally not feasible. To effectively select which kernel pairs to
fuse while adhering to memory resource constraints, we propose
two algorithms: Algorithm 1 that infers the minimal ping-pong
buffer shape required by the stream layout converter; and Algo-
rithm 2 that determines a global fusion plan under on-chip memory
constraints.

5.2.1 Stream Layout Converter Generation. Algorithm 1 compares
the source and target itensors across each data dimension (lines

Require: G, kernel fusion design space; Cp,qx, max fusion cost

Ensure: F, sets of nodes to be fused; C, costs of fused nodes
1: F—[0],C«—[0],M « {} > Map from node to index of fusion
2: for n in topo_sort(G) do
3: cand < {} > Map from index of fusion candidate to cost
4 for p in G.predecessors(n) do
5: cost « compute_memory_cost(G.edges|[p, n, 0])
6: cand|[M|[p]] « cand.get(M[p],0) + cost
7 f_idx « len(F), f_cost « 0
8 if len(cand) > 0 then > Fuse with the nearest candidate
9 f_idx « max(cand.keys()), f_cost « cand|f_idx]

10: if f_idx =len(F) or f_cost + C[f_idx] > Cyqx then

11: F.append({n}), C.append(0), M[n] « len(F) — 1
12: else

13: F[f_idx].add(n), C[f_idx] « C[f_idx] + f_cost
14: M(n] « f_idx

15: G.nodes|n]|”fusion_index”] « M|[n]
16: return F, C

3-16). The ping-pong buffer size can be reduced along a data dimen-
sion only if: 1) their element sizes are equal (lines 4-5); and 2) their
corresponding iteration dimensions are equal, referring to the same
loop nesting level (lines 8-16). For instance, in Figure 5, the second
data dimensions of itensor(b) and itensor(c) both correspond
to iteration dimension d@, allowing this dimension to be reduced;
we only need to buffer a single column of tiles. In materialization,
shared loops will be generated to reuse the buffer along this reduced
dimension. Conversely, their first data dimensions correspond to
iteration dimensions d1 and d2, respectively, making them non-
reducible. Thus, we must buffer all rows of tiles. Consequently, as
Figure 5 illustrates, two tiles (four tiles after ping-pong buffering)
are required in the layout converter.

After identifying reducible data dimensions and corresponding
shared loops, the algorithm filters out those that have parent loops
that are not shareable, ensuring buffer realizability (lines 17-19).
For example, if loop-{0,1,2,4} are shareable but loop-3 is not,
loop-4 must be excluded. Finally, the buffer shape and shared loops
are returned. This process’s worst case occurs when no dimension
is reducible, demanding that the entire data be held on-chip for
fusion. This may result in significant memory overhead.

5.2.2  Kernel Fusion Exploration. The input Cpax (max fusion cost)
for Algorithm 2 represents the maximum on-chip memory a single
fused kernel can utilize. For FPGAs, this is typically set to the total
on-chip memory size. Consequently, the kernel fusion process can
also be viewed as a graph partitioning problem. After fusion, each
resulting fused kernel will occupy a single FPGA. If a computa-
tion graph comprises multiple such kernels, they can be executed
across multiple FPGAs, on a single FPGA sequentially, or with a
hybrid approach. StreamTensor supports all these approaches as a
compiler. However, mapping M kernels to N FPGAs and managing
inter-FPGA communication are beyond the scope of this paper.
Algorithm 2 traverses all kernels in a topological order (line 3).
For each kernel, it first gathers fusion candidates from predecessors
and computes the fusion cost (lines 4-11). The kernel is fused with
the nearest valid candidate (lines 13-14) if it does not exceed the



MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

g o Source: Pipeline Il = 1, Initial delay = 3 000POOOBHDYO
N o it _ ,
Input | @ © @ Target: Pipeline Il = 2, Initial delay = 1 ,, 000400806
FIFO | 9®®© 0 ,/
00000 /
00000
EOU“’? 00O OO Maxiokens=3 Shures
erne e
0006000 ‘ . -
12345067 8 9101112131415 Time
Inter 0o g ggo o /’, (b) Token Statuses modeled with
FIFO 906000 ’ piecewise linear functions
/
/
P 0000000000|/
ernel
000000000 2 max jokens| | Tota)
Output! 0000000 Tokens T
FIFO 00000 ~ —
000 Initial
o Delay D Source
Time 0 1 2 3 4 5 6 7 8 9 101112131415 Time

(a) Token location v.s. time

(c) Calculate max_tokens from delay when
source throughput lower than target

Hanchen Ye and Deming Chen

delay[0][1] delay[1][2]

D[1]

Kernel2
D[2]

KernelO

delay delay[0][2]

Tokens

max_tokens D[e]
minimize: delay[@][1]+delay[1][2]+delay[@][2]

1. delay[@][1] >= D[]
constraints: 2. delay[1][2] >= D[1]

[3. delay[e][2] >= D[e] + D[1]]

- \

Source
Time
(d) Source throughput greater than
target without starvation

- \

s N

Tokens

max_tokensgoyrce Kernel0|Kernel1

Time Time
(e) Source throughput greater than (f) Linear-programming formulation example
target with starvation

Figure 8: Token behavior modeling with piecewise linear function and linear-programming-based FIFO sizing formulation.

resource limit (lines 15-20). Fusion results are written back to the
graph (line 22) and used to configure the optimizations discussed
in Section 4.2. Dataflow kernel fusion always has a feasible solu-
tion unless a single kernel occupies more resources than a single
FPGA. In such a case, the result is fed back to the tiling space for
refinement, for example, reducing tiling and/or unrolling factors.

5.3 Resource Allocation Space

On hardware like FPGAs, due to limited on-chip memory and com-
pute resources, effective resource allocation greatly affects routing
congestion and clock frequency. In this space, we need to solve:

(1) FIFO sizing: Determine FIFO depths to avoid deadlocks and
improve execution overlap. This section will cover more details.

(2) Graph partitioning: On multi-die hardware, we need to assign
tasks to dies. This assignment problem is formulated and solved
using Integer Linear Programming (ILP). In our ILP model, a
binary list represents each task’s assignment. A constraint
ensures that only one element in this list can be "1", with its
position indicating the assigned die. The ILP objective is to
minimize both inter-die communication and resource imbalance
across the dies. Since similar formulations have been studied [22,
27], we omit further details.

(3) Memory allocation: Place each buffer in LUTRAM, BRAM,
or URAM on FPGAs, prioritized by size. Since this algorithm is
straightforward, we omit further details.

5.3.1 Token Behavior Model. To address the FIFO sizing problem
discussed in Section 1.3, we first propose a token production and
consumption model based on piecewise linear functions. Figure 8(a)
illustrates the token communication between Source and Target ker-
nels fused through InterFIFO. Pipeline I is the cycle count between
two consecutive output tokens, while initial delay is the cycle count
required to produce the first output token. A token is defined as the
atomic data element communicated between kernels. At time0, all
five input tokens are in InputFIFO, and tokens begin to stream into
Source at timel. At time5, Source pushes token1 into InterFIFO, while
Target consumes token0, leaving one token in InterFIFO. At time,
Target cannot consume token1 because it requires two cycles to pro-
cess token0. Meanwhile, token2 is pushed into InterFIFO, increasing

its token count to two. At time8, Source finishes processing tokens,
when InterFIFO holds its maximum capacity of three tokens. Target
then continues to consume and process the remaining tokens until
time15, when all tokens are fully processed.

To model these complex behaviors with an analyzable function,
we reorganize the token statuses from Figure 8(a) into Figure 8(b),
aligning the statuses of the same token in the same row. We observe
that the boundary between the Source (blue) and InterFIFO (red)
sections can be perfectly modeled with a piecewise linear func-
tion (blue curve). This function represents the token count produced
by Source. Similarly, we can model the token count consumed by
Target with the orange curve. The difference between these two
curves represents the token count in InterFIFO. These curves can
be represented by the kernel’s latency, initial delay, and pipeline
II. StreamTensor automatically invokes vendor tools like HLS to
profile these metrics for each kernel in the middle of the flow. Since
these metrics are specific to vendor platform’s architecture, tech-
nology node, and mapping strategy, they must be obtained through
this profiling process. As resource allocation is the last design space,
the kernel designs remain unchanged in the subsequent StreamTen-
sor flow. As long as the vendor tools use a deterministic scheduling
algorithm, the final accelerator’s metrics will match those profiled
earlier. This consistency guarantees the validity of our algorithm.

5.3.2  Maximum Token Calculation. As shown in Figure 8(c), we
define L as the total latency of Source execution; D as the initial
delay from the start of Source execution to the production of its first
output token; delay as the time from the start of Source execution
to the start of Target execution. Naturally, delay is always greater
than or equal to D since Target cannot start its execution before the
first token is produced by Source. We define T as the exact number
of tokens passed from Source to Target for a single accelerator
execution. T is a static value that can be analytically inferred from
tensor shapes in StreamTensor. We will address how to handle
dynamic tensor shapes in Section 5.3.5. With a static T value, the
maximum token count in InterFIFO, max_tokens, can be analytically
calculated from delay:

L —delay
IITarget

1

max_tokens =min |T, T — |
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The pipeline II determines the slope of the curve, i.e., the kernel
throughput. Figure 8(c) illustrates the case where Source’s through-
put is greater than Target’s. Conversely, when Source’s through-
put is lower, data starvation may limit Target’s throughput. Fig-
ure 8(d) shows that Target is unaffected with a sufficiently large
delay, whereas Figure 8(e) shows that Target is eventually starved
and its throughput is equalized to Source’s throughput. In both
cases, max_tokens can be calculated from delay:

delay — D )
Isource

max_tokens = min (T, [ ()

Equations 1 and 2 both reveal a positive correlation between
max_tokens and delay. As shown in Figure 8(c)-(e), setting the
InterFIFO depth to max_tokens prevents back-pressure from Target
onto Source. This ensures steady, periodic behavior between any
pair of Source and Target across multiple accelerator executions.
By preventing stalls from back-pressure, the analytical relationship
between max_tokens and delay is preserved.

5.3.3 Equalization. The approach described in Section 5.3.2 is
named as the Normal equalization strategy, which assumes that ker-
nels always produce tokens at their original throughput. However,
the throughput of a dataflow accelerator is ultimately determined by
its slowest kernel. Based on this, we propose a Conservative equal-
ization strategy, which scales the pipeline II of all kernels to match
the throughput of the slowest kernel. The resulting max_tokens
values are smaller than or equal to those from the Normal strat-
egy because the gap between any pair of Source and Target curves
is minimized. The drawback is that faster kernels are frequently
stalled by back-pressure, potentially increasing the latency. There-
fore, the Normal and Conservative strategies present a trade-off
between area and performance, where the Conservative strategy
minimizes FIFO buffer sizes at the cost of increased overall latency.
The key difference between the Conservative and Normal strate-
gies lies in how their IIs are initially scaled. Because this scaling
preserves the piecewise-linear nature of the kernel curves, the equa-
tions for calculating max_tokens from delay remain identical for
both strategies.

5.3.4 LP-based FIFO Sizing. By introducing the token behavior
model, we transform the FIFO sizing problem into a problem of
determining the delay values between kernels. Figure 8(f) shows
an example of dataflow graph. Kernel0 has two outputs; Kernell de-
pends on Kernel0; Kernel2 has two operands and must wait for both
Kernel0’s and Kernel’s first tokens. Given that Kernell produces its
first token after D[L@]+D[1], delay[@][2] must be greater than or
equal to this value. Their relationship is depicted in Figure 8(f), with
the green curve representing Kernell. The maximum token count
for the FIFO between Kernel0 and Kernel2, max_token[@][2], can
then be calculated using delay[@][2]. If the FIFO size is smaller
than this maximum, Kernel0 will stall due to back-pressure, which
harms overall performance. This stall can propagate to Kernell and
Kernel2, preventing the back-pressure from resolving and poten-
tially causing a deadlock. A FIFO size equal to max_token[@][2]
is sufficient to prevent back-pressure and avoid a deadlock; it is
also required to prevent performance degradation from unintended
kernel stalls. We propose an LP formulation to optimally solve for
the delay values. Given G = (V, E), where V is the set of kernels
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and E is the set of edges between the kernels, the objective and
constraints of LP are:

minimize Z delay(i, j) (3)
e jEE
VYu,v € V,Vpath € P, ,, Z delay(i, j) > threshold(u,v) (4)
z,-,jepath

e;j € E covers all edges in the graph; path € P, , covers all full
paths connecting any pair of kernels, named u and v; e; ; € path
covers all edges along a path connecting the two kernels u and v.
We minimize the summation of delays on all edges, which serves
as a proxy for optimizing FIFO sizes due to the positive correlation
between max_tokens and delay. threshold(u,v) is the maximum
accumulated D over all paths connecting the two kernels u and v:

threshold(u,v) pagllgu)u Z (i) (5)

€j,j epath

The LP formulation for the example above is shown in Figure 8(f).
Note that in this example, the two paths diverging from Kernel0
re-converge to Kernel2 as two distinct input operands, rather than
joining into a single input. We will discuss the handling of dynamic
behaviors like path joining in Section 5.3.5. Resource constraints are
not needed for the LP problem for two reasons: First, as discussed in
Section 5.2, dataflow kernel fusion guarantees that all fused kernels
will fit within available on-chip resources by restricting the fusion
cost. Second, the memory utilization of stream FIFOs is negligible
compared to that of dataflow kernels and converters. Consequently,
the LP problem can be optimally solved in polynomial time. Notably,
we do not need to enforce vendor tools to implement the delays.
Instead, the delays are automatically fulfilled through the FIFO
dependencies between dataflow kernels. In the example above, Ker-
nel2 automatically waits for Kernell because it depends on KernelI’s
output token.

5.3.5 Dynamic Behaviors. StreamTensor uses different approaches
to manage dynamic behaviors within dataflow accelerators:

(1) Control flow: StreamTensor leverages Torch-MLIR [55] as its
front-end. Torch-MLIR can infer the static tensor shapes as
much as possible from inputs, eliminating ifs and unrolling
fors associated with static tensor shapes. If the control flow
relies on runtime values, the corresponding subgraph will fall
back to naive PyTorch execution [5] on the host.

(2) Path joining: This often arises in the presence of control flow,
particularly when a dataflow kernel is reused with inputs from
different sources. By eliminating control flows, Torch-MLIR
resolves the corresponding path joining problems.

(3) Dynamic tensor shape: Tensors with dynamic shapes, like

input tokens and KV-caches, require shape hints to define their

maximum possible dimension sizes (e.g., maximum sequence

length). These hints determine the total number of tokens, T,

that can be processed between any two dataflow kernels. From

these maximum T values, StreamTensor infers max_tokens

based on the method discussed in Section 5.3.

FIFO stall: StreamTensor does not generate a static schedule for

the dataflow accelerator. Instead, all dataflow kernels automati-

cally honor their dependencies via FIFO interconnections. As

a result, unexpected FIFO stalls caused by runtime events, e.g.,

“

=
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Table 4: Comparison with previous works on GPT-2 model. TTFT measures the time to first token in ms, the lower the better.
Speed measures the decoding speed in token/s, the higher the better. All results of previous works are directly from their papers.

Ours Allo [15] (Ratio of gll‘,r; DFX [29] (Ratio of g%?)
[Input Len:
Output Len] Latency TTFT Speed Latency TTFT Speed Latency TTFT Speed
(ms) (ms)  (token/s) (ms) (ms) (token/s) (ms) (ms) (token/s)
[32:32] 19499 3459 19951  238.32(0.82x)  81.50 (0.42x)  204.05 (0.98x)  350.00 (0.56x)  177.20 (0.20x)  185.19 (1.08x)
[64:64] 35824  61.27 21551  476.64(0.75x)  162.99 (0.38x)  204.05 (1.06x)  694.70 (0.52%)  349.10 (0.18x)  185.19 (1.16x)
[128:128] 696.65 12535  224.05  953.28 (0.73x)  325.98 (0.38x) 204.05 (1.10x) 1384.00 (0.50x)  692.80 (0.18x)  185.19 (1.21x)
[256:256] 138776  272.85  229.61  1906.56 (0.73x) 651.96 (0.42x) 204.05 (1.13x)  2800.00 (0.50x) 1417.60 (0.19x)  185.19 (1.24x)
Geo. Mean - - - 0.76x 0.40x 1.06x 0.52x 0.19x 1.17x

Table 5: Comparison with NVIDIA GPUs on GPT-2 model. TTFT measures the time to first token in ms, the lower the better.
Speed measures the decoding speed in token/s, the higher the better.

[Input Len: Ours A100 (Ratio of a‘l‘&f 2080Ti (Ratio of 2(0)2;6%
Output Len] Latency TTFT Speed Latency TTFT Speed Latency TTFT Speed
(ms) (ms)  (token/s) (ms) (ms) (token/s) (ms) (ms) (token/s)
[32:32] 19499 3459 19951  291.16 (0.67x)  8.72(3.97x) 113.30 (1.76x)  518.46 (0.38x)  24.98 (1.38x)  64.85 (3.08x)
[64:64] 35824 6127 21551 567.41 (0.63x)  8.76 (6.99x)  114.56 (1.88x) 1010.81 (0.35x)  25.23 (2.43%)  64.94 (3.32x)
[128:128] 696.65 12535  224.05  1118.28 (0.62x) 8.65 (14.49%) 115.35(1.94x) 3969.76 (0.18x)  25.26 (4.96x)  32.45 (6.90%)
[256:256] 1387.76 27285  229.61  2227.79 (0.62x) 8.53(31.99x) 115.35(1.99x) 7914.23 (0.18x)  25.23 (10.81x)  32.45 (7.08x)
Geo. Mean - - - 0.64x 10.65x 1.89x 0.25x 3.67x 4.73x

external memory traffic, do not require specific handling. Once
the event causing the stall resolves, the dataflow accelerator
seamlessly resumes operation from the stall point.

6 Experiments

To evaluate the performance of dataflow accelerators generated by
StreamTensor, we deploy multiple LLMs on AMD U55C FPGA with
Vitis 2024.1. As shown in Figure 4, HLS C++ code is generated by
StreamTensor and compiled into bitstreams using Vitis to program
the FPGA. Table 6 shows the experimental setup of the platforms
evaluated in this section. All experimental results of StreamTensor
reported are obtained via on-board measurement. All LLM models
evaluated on StreamTensor are modified from Huggingface models
to accommodate the requirements of Torch-MLIR front-end.

6.1 GPT-2

Most prior works [14, 15, 29] on FPGAs evaluate their frameworks
using GPT-2 [45]. Table 4 shows a comparison between StreamTen-
sor and previous works under different input/output sequence
length configurations. For GPT-2, we successfully fuse an entire
transformer block onto a single FPGA by inserting layout convert-
ers and stream FIFOs, ensuring all intermediate results are com-
municated on-chip. Subsequently, this single FPGA accelerator is
triggered multiple times with different weight parameters to exe-
cute all transformer blocks in a sequential manner. StreamTensor
achieves 0.76x shorter total latency and 0.40x shorter TTFT than
Allo [14, 15]. Compared to DFX [29], StreamTensor delivers even
greater improvements, e.g., 0.19x TTFT. These gains come from
StreamTensor’s automated dataflow architecture exploration. In
contrast, both Allo and DFX require manual design of all dataflow

Table 6: Experiment setup of evaluated platforms.

Ours Allo [15] DFX[29] A100  2080Ti
Platform AMD AMD AMD NVIDIA NVIDIA
U55C U280 U280 A100 2080Ti

Process Node  16nm 16nm 16nm 7nm 12nm

Freq. (MHz) 250 250 200 1065 1350

Quantization W4A8 W4A8 FP16 WB8AS8 WB8AS8
T'hermal 150W 225W 225W 300W 250W

Design Power

Peak Perf.

(INT8 TOPS) 24.5 24.5 24.5 624 215.2
Off-chi 16GB 3GB 8GB 80GB 11GB
Memorp HBM HBM HBM HBM DDR

y 460GB/s 460GB/s  460GB/s 1935GB/s 616GB/s
On-chip  ,\\yp 4iMB  4IMB  40MB  55MB
Memory

kernels and components. For example, all the layout converters,
DMAs, and FIFOs are manually written and configured, a process
that is error-prone and may lead to suboptimal design choices. Note
that GPT-2 is the only LLM reported in Allo and DFX due to their
limited flexibility and productivity on other emerging LLMs. As
shown in Table 4, TTFT scales roughly linearly with input length,
demonstrating the design’s scalability. We also compare StreamTen-
sor with NVIDIA GPUs in Table 5, where StreamTensor achieves
0.64x and 0.25x shorter total latency compared to A100 and 2080Ti,
respectively. We can observe that GPUs outperform StreamTen-
sor by a large margin for the TTFT metric due to their abundant
computation resources. However, because the decoding stage of
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Figure 10: Ablation studies on GPT-2 model and emerging LLMs.

Table 7: Configurations of LLMs, collected from their Hug-
gingface model cards [3, 25, 42, 51].

GPT-2 [45] Qwen [7] Llama [56] Gemma [50]

Layers 24 24 22 26
Hidden Size 1024 896 2048 1152
FEN 4096 4864 5632 6912
Hidden Size
Attention
Heads 16 14 32 4
KV Heads - 2 4 1
Activation GELU SiLU SiLU GELU

LLM inference is highly memory-bound, the dataflow accelerators
generated by StreamTensor can outperform GPUs due to their re-
duced external memory access, leading to better decoding speed
and overall latency.

6.2 Emerging LLMs

To evaluate the flexibility of StreamTensor, we test it on several
emerging LLMs, including Qwen [7], Llama [56], and Gemma [50].
Model configurations are shown in Table 7. For all three of these

models, we also successfully fuse an entire transformer block onto
a single FPGA and execute it in the same manner as GPT-2. From
Figure 9, we observe that StreamTensor can outperform A100 on
energy efficiency on Qwen and Gemma models by 1.99x and 1.59x
due to the lower power of FPGAs. Figure 10a shows that the Llama
model generates more intermediate results than other models. This
leads StreamTensor to adopt a more conservative dataflow FIFO
sizing strategy, which, in turn, reduces the execution overlap be-
tween dataflow kernels and results in lower performance compared
to Qwen and Gemma.

6.2.1  On-chip Memory Reduction Study. Figure 10a shows on-chip
memory usage before and after kernel fusion across all evaluated
LLMs. This study focuses on the intermediate results within a single
LLM layer. Model parameters are excluded in this study, as they
are too large to fit on-chip. Kernel fusion reduces memory usage
to just 14.8%-16.8% of the original design. Without fusion, LLMs
cannot be deployed in a fully dataflow fashion due to excessive
intermediate buffer sizes.

6.2.2 Compilation Time Study. Figure 10b shows the breakdown of
execution time for generating RTL from PyTorch. The HLS process
(generating RTL from C++) consumes the majority of the total time.
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The downstream tool profiling also accounts for a large portion,
since resource allocation decisions depend on accurate profiling
results. In comparison, StreamTensor compilation and parameter
packing take only a small fraction of the total time. As discussed in
Section 4.2, StreamTensor automatically packs and widens inter-
faces to optimize external memory efficiency. As a result, model
parameters must be packed accordingly to match the desired mem-
ory layout. After packing, binary files are generated and loaded
at runtime. In Figure 10c, we further break down StreamTensor’s
compilation time based on the stages shown in Figure 4. Total
compilation time ranges from 26.8s to 63.4s in our experiments.
High-level stages (from Linalg optimization to resource allocation)
are relatively fast. In contrast, low-level stages (bufferization, HLS
optimization, and code generation) take more time. This validates
the efficiency of our high-level itensor optimizations.

7 Related Works

Pioneering works [10, 11, 37, 39, 52] established the foundation of
stream-based dataflow modeling and compilation. Later works [26,
38, 57] explored buffer minimizing and slack matching problems
in dataflow networks. [18, 21] explored the deadlock analysis and
buffer sizing for sequential programs. Note that these papers fo-
cused on steady-state scenarios (i.e., the Conservative equalization
strategy in Section 5.3.3), overlooking the trade-off between area
and performance. [22, 27] improved the floorplanning and clock
frequency for streaming applications on FPGAs. [32, 59] tackled the
buffer insertion and placement problem in dynamically scheduled
dataflow circuits [31].

Compilers are essential for mapping applications onto spatial
architectures like DSAs and FPGAs. SARA [64] provided a compiler
stack for large-scale DSAs like Plasticine [44], translating an imper-
ative DSL with nested control flow, virtualizing resources, and man-
aging memory consistency. The compiler for Revet [47] mapped
its “dataflow threads” abstraction, which supports data-dependent
control flow, onto vectorized DSAs [48] using streaming tensor oper-
ations. Works like DSAGEN [58] synthesized programmable spatial
accelerators directly from dataflow graph descriptions. Constraint-
based scheduling techniques [41] often use ILP for optimal or near-
optimal instruction scheduling on spatial platforms. Higher-level
programming abstractions are also crucial, such as Sigma [66],
which compiled Einstein summations to dataflow hardware. Tar-
geting FPGAs, Stream-HLS [8] automatically generated optimized
HLS-based dataflow architectures from C/C++ or PyTorch. These
diverse compilers and frameworks automated critical optimizations.
However, they often only enable partial design space exploration,
and lack a systematic typing system to enable flexible stream-based
kernel fusion and other optimizations. Here, we use Stream-HLS [8]
as an example to analyze its differences with StreamTensor:

o Due to the lack of a systematic typing system, Stream-HLS cannot
automatically generate DMAs for external memory, limiting its
practical usage and scalability on real-world applications.

o Stream-HLS overlooked the FIFO sizing problem, which is essen-
tial to avoid deadlocks in dataflow accelerators and scale out to
real-world applications.

o Stream-HLS demanded two conditions to enable streaming be-
tween dataflow kernels: 1) the number of writes and reads to/from
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the shared buffer must be equal; and 2) the write order of the
producer must match the read order of the consumer. Although
both conditions are often difficult to meet, Stream-HLS cannot
perform kernel fusion without meeting either of them. In con-
trast, StreamTensor resolves these two conditions through the
itensor-based typing system, making any dataflow kernels fuse-
able by design.

o Due to the reasons above, Stream-HLS did not support the kernel
fusion space exploration like StreamTensor, limiting its appli-
cation on large-scale workloads that cannot be fully deployed
on-chip without kernel fusion. For example, Stream-HLS only
reports the performance of the multi-head attention layer and
feed-forward layer separately, rather than for the entire trans-
former block.

8 Conclusion and Future Works

This paper introduces StreamTensor, a compiler framework that au-
tomates the generation and optimization of stream-based dataflow
accelerators. StreamTensor’s main contributions include an i tensor-
based typing system that forms the foundation of the entire frame-
work, a PyTorch-to-device compilation pipeline, and a set of design
spaces for exploring key architectural parameters. By addressing
common pitfalls in existing frameworks, StreamTensor effectively
improves the efficiency of dataflow accelerators. As the demand
for efficient Al continues to grow, StreamTensor paves the way for
future work in scalable and extensible dataflow compilation.

Looking ahead, StreamTensor’s modular design and itensor typ-
ing system open promising avenues for future work, particularly
in extending its compatibility with diverse dataflow architectures
and specialized kernel languages. StreamTensor can be adapted
to programmable architectures like AMD Versal [24], Sambanova
RDU [43], and Groq LPU [1] by retargeting its low-level compi-
lation and code generation stages. This process would map the
dataflow kernels, FIFOs, and layout converters in StreamTensor
IR into platform-specific components, such as the Al engines and
routing networks in AMD Versal. Similarly, StreamTensor can inte-
grate with kernel languages like Allo [15], allowing developers to
incorporate manually-optimized kernels as black-box components.
In both scenarios, the itensor system serves as a crucial abstrac-
tion layer, enabling StreamTensor to perform high-level dataflow
optimizations, including kernel fusion and dataflow component
generation, while interfacing with target-specific back-ends and
black-box components. This promises to broaden StreamTensor’s
applicability by leveraging the unique strengths of various hard-
ware platforms and programming languages.
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