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ABSTRACT
High-level Synthesis (HLS) has been widely adopted as it signif-
icantly improves the hardware design productivity and enables
quick design space exploration (DSE). However, existing HLS tools
do not scale well to large designs for two main reasons: (1) The
intermediate representations (IR) are not initially designed for HLS,
thus are not expressive enough for comprehensive HLS design
spaces; (2) The traditional HLS algorithms are based on a single-
level abstraction, thus cannot easily capture the design hierarchy
and are not scalable as the design size grows. To tackle these prob-
lems, we present ScaleHLS, a new HLS compilation flow based on a
multi-level compiler infrastructure, MLIR. Utilizing MLIR, ScaleHLS
introduces a hierarchical representation mechanism for HLS de-
signs, enables scalable optimizations at multi-level abstractions,
and directly generates optimized synthesizable HLS code. This ap-
proach not only explores the hierarchical design space efficiently
but also scales well to large HLS designs. The initial experiments
show that comparing to the baseline designs only optimized by the
regular LLVM optimizations of Xilinx Vivado HLS, ScaleHLS im-
proves the performance by up to 768.2× on computation kernel level
algorithms and 4107.6× on a neural network model MobileNet-v2.

1 INTRODUCTION
High-level synthesis (HLS) technique automatically translates high-
level languages to dedicated hardware accelerators, thereby elimi-
nating the cumbersome and error-prone programming of hardware
description languages [11]. Recent years, HLS has been widely used
in many applications, including neural networks [1], IoT [13], video
processing [7], etc. These HLS designs highly rely on user-specified
directives and manual code transformation to improve the quality
of hardware. However, as HLS tools open up large design spaces,
non-ideal design choices may easily lead to sub-optimal solutions
and poor overall performance.

Recently, we have witnessed a large number of papers investi-
gating the automatic quality of results (QoR) estimation and design
space exploration (DSE) for HLS. Authors of [14–16] extracted nec-
essary design information from static dataflow graphs or dynamic
execution traces, then passed such information to predefined an-
alytical models for generating the estimation. Authors of [4, 8, 9]
introduced machine learning methods to extract unique features
that cannot be easily parameterized by analytical models. On top of
QoR estimation, authors of [14, 15] proposed automatic DSE tools
based on the guidance of resource and performance estimations.
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In addition, polyhedral analysis and integer linear programming
(ILP)-based algorithms were exploited in [5, 17, 18] for proposing
qualified design candidates and searching for the optimal solution
under hardware resource constraints.

However, existing DSE methods are difficult to handle large HLS
designs containing a large number of sub-modules and sophisticated
inter-dependencies. The reason is that existing efforts heavily rely
on unified and flattened intermediate representations (IR), such as
LLVM, for conducting analysis and optimizations. Such a low-level
IR barely supports hierarchical hardware optimization techniques,
such as task/module level resource-sharing, scheduling and paral-
lelization, inter-loop analysis and transformation, and hardware
IP integration. These design optimizations are located at different
abstraction levels and are very difficult to be explored and applied
on a flattened low-level IR, thereby obstructing current approaches
to comprehensively explore and optimize the large designs through
HLS. Furthermore, the flattened IR of a large design will lead to a
large non-hierarchical design space, which is hard to be effectively
searched through the existing DSE algorithms.

To address the difficulty of handling large HLS designs and
make the automatic DSE more scalable and flexible, we introduce
ScaleHLS, a next-generation HLS tool which can represent and
optimize large designs at multiple abstraction levels. The main
contributions of this paper are:

• To the best of our knowledge, ScaleHLS is the first MLIR-
based end-to-end HLS compilation flow.

• We propose a hierarchical and scalable optimization method-
ology, which optimizes HLS designs at multiple abstraction
levels, including graph, loop, and directive levels, to handle
the increasing design space as the HLS design size grows.

• We propose an automated DSE engine to search for the
Pareto frontier of the important latency-area trade-off space.
A QoR estimator is also developed to evaluate design points
discovered by the DSE engine rapidly.

• We design a synthesizable HLS C++ emitter for bridging
the gap between the MLIR compilation framework and RTL
generation back-ends.

2 SCALEHLS FRAMEWORK
ScaleHLS is built on top of MLIR [2, 6], which is a compilation
framework incorporating multiple levels of functional and repre-
sentational hierarchy. ScaleHLS compiles programs described in
high-level programming frameworks (e.g., ONNX [3] and PyTorch
[10]) or general-purpose languages (e.g., C/C++) to synthesizable
HLS C++ code. Figure 1 shows the architecture of the ScaleHLS
framework, where Dialect is an MLIR terminology referring to a
set of customized operations, types, and attributes. In the ScaleHLS
compilation pipeline, the input programs are first parsed into MLIR
constructed with tensor-level operations (e.g., ONNX and ATen
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Figure 1: ScaleHLS framework.

Table 1: DSE results of computation kernels.

Kernel Prob. Size Speedup Unroll Factors Target II

BICG 2048 83.3× [32,8] 43
GEMM 2048 768.2× [16,1,16] 6

GESUMMV 2048 199.2× [4,32] 9
SYR2K 2048 423.8× [8,8,8] 29
SYRK 2048 542.3× [32,4,8] 34
TRMM 2048 614.6× [4,4,64] 25

dialects), which is then lowered to loop-level representations using
MLIR built-in Affine, Standard, and SCF dialects. To enable the
hierarchical HLS within MLIR, we build an HLSCpp dialect for
representing the HLS-specific operations and attributes (e.g., loop
pipelining) and enabling the synthesizable C++ code generation.

The hierarchical representation strategy combining external and
our customized dialects helps ScaleHLS to leverage the powerful
transformation and analysis infrastructures of MLIR while enabling
a comprehensive capability of conducting HLS-oriented optimiza-
tions. As shown in Figure 1, our ScaleHLS optimization passes are
applied at multiple compilation levels, including graph, loop, and
directive levels, to improve the design quality. For exploring the
large design space brought by the large HLS designs, ScaleHLS
provides a fast QoR estimator based on analytical models which
can take the structural IR as input and estimate the latency and
resource utilization. Combining the QoR estimator and all opti-
mization passes crossing different abstraction levels, we deliver
an automated DSE engine to search for the Pareto frontier of the
design space, where each design point is corresponding to one
combination of optimization passes.

After the completion of all conversions and optimizations, the
generated IR is translated into synthesizable C++ code by ScaleHLS
C++ emitter and then passed to external HLS tools for generating
RTL code. Meanwhile, flattened LLVM IR can also be generated
for the purpose of software simulation or passing to other existing
LLVM-compatible HLS tools.

3 INITIAL EXPERIMENTAL RESULTS
We evaluate the ScaleHLS DSE engine on 6 computation kernels
with a problem size of 2048 and the results are shown in Table 1.
Xilinx Vivado HLS 2019.1 is used to generate the RTL code and the
target platform is Xilinx XC7Z020 FPGA, which has 220 DSP slices
and 4.9 Mbmemories on chip. Table 1 lists the optimal unroll factors
and pipeline initial intervals (II) discovered by the DSE engine. Loop
perfection, loop order permutation, variable loop bound elimination,
and array partition are also automatically applied for improving the
design quality. Among all 6 benchmarks, a speedup ranging from

Figure 2: Ablation study results of MobileNet-v2. 𝐷 , 𝐿{𝑛},
and 𝐺{𝑛} denote directive, loop, and graph level optimiza-
tions, respectively. Larger 𝑛 indicates stronger optimization.

83.3× to 768.2× is obtained compared to the baseline design which
is only processed by the regular LLVM optimizations of Vivado
HLS. As previous DSE methods [14, 15] only supports single-level
abstraction, they are difficult to find reasonable design points when
the problem sizes are large. The proposed multi-level representation
enables ScaleHLS to find previously unachievable design points
and explore a more comprehensive design space.

To evaluate the ScaleHLS framework when handling large and
complicated HLS designs, we take a MobileNet-v2 [12] PyTorch
model as the test case and Xilinx VU9P FPGA which has 6840 DSP
slices and 345.9 Mbmemories as the target platform. To quantify the
speedup contributed by each of the three optimizations (directive,
loop, and graph) and evaluate the proposed multi-level optimization
methodology, we perform ablation studies and the results are shown
in Figure 2. From the data of 𝐷 , 𝐿6+𝐷 , and𝐺6+𝐷 , we can observe
that the directive, loop, and graph optimizations contribute around
2.2x, 133.9x, and 12.9x speedups, respectively. By combining all
three optimizations, the generated RTL design achieves a 4107.6×
speedup compared to the baseline only optimized by Vivado HLS.
Furthermore, ScaleHLS allows to tune the optimization level 𝑛 from
1 to 6 for loop and graph optimizations, which enables to explore the
trade-off space between area and speedup. The experimental results
show that through the effective representation and optimization of
large HLS designs in MLIR, ScaleHLS can significantly improve the
hardware performance, resource efficiency, and the productivity of
designing HLS-based hardware accelerators.
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