ScaleHLS: Achieving Scalable High-Level Synthesis through
MLIR

Hanchen Ye!, Cong Hao?, Hyunmin Jeong!, Jack Huang!, Deming Chen!
'University of Illinois at Urbana-Champaign, 2Georgia Institute of Technology

ABSTRACT

High-level Synthesis (HLS) has been widely adopted as it signif-
icantly improves the hardware design productivity and enables
quick design space exploration (DSE). However, existing HLS tools
do not scale well to large designs for two main reasons: (1) The
intermediate representations (IR) are not initially designed for HLS,
thus are not expressive enough for comprehensive HLS design
spaces; (2) The traditional HLS algorithms are based on a single-
level abstraction, thus cannot easily capture the design hierarchy
and are not scalable as the design size grows. To tackle these prob-
lems, we present ScaleHLS, a new HLS compilation flow based on a
multi-level compiler infrastructure, MLIR. Utilizing MLIR, ScaleHLS
introduces a hierarchical representation mechanism for HLS de-
signs, enables scalable optimizations at multi-level abstractions,
and directly generates optimized synthesizable HLS code. This ap-
proach not only explores the hierarchical design space efficiently
but also scales well to large HLS designs. The initial experiments
show that comparing to the baseline designs only optimized by the
regular LLVM optimizations of Xilinx Vivado HLS, ScaleHLS im-
proves the performance by up to 768.2x on computation kernel level
algorithms and 4107.6X on a neural network model MobileNet-v2.

1 INTRODUCTION

High-level synthesis (HLS) technique automatically translates high-
level languages to dedicated hardware accelerators, thereby elimi-
nating the cumbersome and error-prone programming of hardware
description languages [11]. Recent years, HLS has been widely used
in many applications, including neural networks [1], IoT [13], video
processing [7], etc. These HLS designs highly rely on user-specified
directives and manual code transformation to improve the quality
of hardware. However, as HLS tools open up large design spaces,
non-ideal design choices may easily lead to sub-optimal solutions
and poor overall performance.

Recently, we have witnessed a large number of papers investi-
gating the automatic quality of results (QoR) estimation and design
space exploration (DSE) for HLS. Authors of [14-16] extracted nec-
essary design information from static dataflow graphs or dynamic
execution traces, then passed such information to predefined an-
alytical models for generating the estimation. Authors of [4, 8, 9]
introduced machine learning methods to extract unique features
that cannot be easily parameterized by analytical models. On top of
QoR estimation, authors of [14, 15] proposed automatic DSE tools
based on the guidance of resource and performance estimations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE 21, April 15, 2021, Virtual, Earth

© 2021 Copyright held by the owner/author(s).

In addition, polyhedral analysis and integer linear programming
(ILP)-based algorithms were exploited in [5, 17, 18] for proposing
qualified design candidates and searching for the optimal solution
under hardware resource constraints.

However, existing DSE methods are difficult to handle large HLS
designs containing a large number of sub-modules and sophisticated
inter-dependencies. The reason is that existing efforts heavily rely
on unified and flattened intermediate representations (IR), such as
LLVM, for conducting analysis and optimizations. Such a low-level
IR barely supports hierarchical hardware optimization techniques,
such as task/module level resource-sharing, scheduling and paral-
lelization, inter-loop analysis and transformation, and hardware
IP integration. These design optimizations are located at different
abstraction levels and are very difficult to be explored and applied
on a flattened low-level IR, thereby obstructing current approaches
to comprehensively explore and optimize the large designs through
HLS. Furthermore, the flattened IR of a large design will lead to a
large non-hierarchical design space, which is hard to be effectively
searched through the existing DSE algorithms.

To address the difficulty of handling large HLS designs and
make the automatic DSE more scalable and flexible, we introduce
ScaleHLS, a next-generation HLS tool which can represent and
optimize large designs at multiple abstraction levels. The main
contributions of this paper are:

e To the best of our knowledge, ScaleHLS is the first MLIR-
based end-to-end HLS compilation flow.

e We propose a hierarchical and scalable optimization method-
ology, which optimizes HLS designs at multiple abstraction
levels, including graph, loop, and directive levels, to handle
the increasing design space as the HLS design size grows.

e We propose an automated DSE engine to search for the
Pareto frontier of the important latency-area trade-off space.
A QoR estimator is also developed to evaluate design points
discovered by the DSE engine rapidly.

e We design a synthesizable HLS C++ emitter for bridging
the gap between the MLIR compilation framework and RTL
generation back-ends.

2 SCALEHLS FRAMEWORK

ScaleHLS is built on top of MLIR [2, 6], which is a compilation
framework incorporating multiple levels of functional and repre-
sentational hierarchy. ScaleHLS compiles programs described in
high-level programming frameworks (e.g., ONNX [3] and PyTorch
[10]) or general-purpose languages (e.g., C/C++) to synthesizable
HLS C++ code. Figure 1 shows the architecture of the ScaleHLS
framework, where Dialect is an MLIR terminology referring to a
set of customized operations, types, and attributes. In the ScaleHLS
compilation pipeline, the input programs are first parsed into MLIR
constructed with tensor-level operations (e.g., ONNX and ATen

LATTE ’21, April 15, 2021, Virtual, Earth

ScaleHLS
HLS QoR Passes

Estimator

Graph Loop Directive
Opt Passes Opt Passes Opt Passes

1 ! !

ScaleHLS
Dialect

ONNX : ONNX/Km - HLSCpp éﬂéﬁqé/
S ' ! b Dialect

PyTorch —> ATen/TCF —> 7777777777 > ! Afine | o> HELS.C“ > HLS C#++
L N [[] mitter

Figure 1: ScaleHLS framework.

Table 1: DSE results of computation kernels.

Kernel ‘ Prob. Size ‘ Speedup ‘ Unroll Factors ‘ Target II
BICG 2048 83.3x [32.,8] 43
GEMM 2048 768.2X [16,1,16] 6
GESUMMYV 2048 199.2x [4,32] 9
SYR2K 2048 423.8% [8,8,8] 29
SYRK 2048 542.3X [32,4,8] 34
TRMM 2048 614.6x [4,4,64] 25

dialects), which is then lowered to loop-level representations using
MLIR built-in Affine, Standard, and SCF dialects. To enable the
hierarchical HLS within MLIR, we build an HLSCpp dialect for
representing the HLS-specific operations and attributes (e.g., loop
pipelining) and enabling the synthesizable C++ code generation.

The hierarchical representation strategy combining external and
our customized dialects helps ScaleHLS to leverage the powerful
transformation and analysis infrastructures of MLIR while enabling
a comprehensive capability of conducting HLS-oriented optimiza-
tions. As shown in Figure 1, our ScaleHLS optimization passes are
applied at multiple compilation levels, including graph, loop, and
directive levels, to improve the design quality. For exploring the
large design space brought by the large HLS designs, ScaleHLS
provides a fast QoR estimator based on analytical models which
can take the structural IR as input and estimate the latency and
resource utilization. Combining the QoR estimator and all opti-
mization passes crossing different abstraction levels, we deliver
an automated DSE engine to search for the Pareto frontier of the
design space, where each design point is corresponding to one
combination of optimization passes.

After the completion of all conversions and optimizations, the
generated IR is translated into synthesizable C++ code by ScaleHLS
C++ emitter and then passed to external HLS tools for generating
RTL code. Meanwhile, flattened LLVM IR can also be generated
for the purpose of software simulation or passing to other existing
LLVM-compatible HLS tools.

3 INITIAL EXPERIMENTAL RESULTS

We evaluate the ScaleHLS DSE engine on 6 computation kernels
with a problem size of 2048 and the results are shown in Table 1.
Xilinx Vivado HLS 2019.1 is used to generate the RTL code and the
target platform is Xilinx XC7Z020 FPGA, which has 220 DSP slices
and 4.9 Mb memories on chip. Table 1 lists the optimal unroll factors
and pipeline initial intervals (II) discovered by the DSE engine. Loop
perfection, loop order permutation, variable loop bound elimination,
and array partition are also automatically applied for improving the
design quality. Among all 6 benchmarks, a speedup ranging from

Hanchen Ye, Cong Hao, Hyunmin Jeong, Jack Huang, and Deming Chen

Mem (%) DSP (%) [LUT (%) @ Speedup over Baseline
100 I 10000
4107.6x
21572 WX
75 1000
294.5x
50 100
25 10
2 2Xi
0 1
QI X X X)(
a,?’ \/ \/ Ny NN \/
& R R X N R
& e & & & & &F
100 I 10000
4107.6x
75 1000
50 100
28.4x
25 10
2 2X I
o o L lat 1D .
& 9 bxo Y ,LXQ %XO = (OXO @"O
& (ORI N I RV
& R R X X X R
& g & E L

Figure 2: Ablation study results of MobileNet-v2. D, L{n},
and G{n} denote directive, loop, and graph level optimiza-
tions, respectively. Larger n indicates stronger optimization.

83.3X to 768.2X is obtained compared to the baseline design which
is only processed by the regular LLVM optimizations of Vivado
HLS. As previous DSE methods [14, 15] only supports single-level
abstraction, they are difficult to find reasonable design points when
the problem sizes are large. The proposed multi-level representation
enables ScaleHLS to find previously unachievable design points
and explore a more comprehensive design space.

To evaluate the ScaleHLS framework when handling large and
complicated HLS designs, we take a MobileNet-v2 [12] PyTorch
model as the test case and Xilinx VU9P FPGA which has 6840 DSP
slices and 345.9 Mb memories as the target platform. To quantify the
speedup contributed by each of the three optimizations (directive,
loop, and graph) and evaluate the proposed multi-level optimization
methodology, we perform ablation studies and the results are shown
in Figure 2. From the data of D, L6 + D, and G6 + D, we can observe
that the directive, loop, and graph optimizations contribute around
2.2x, 133.9x, and 12.9x speedups, respectively. By combining all
three optimizations, the generated RTL design achieves a 4107.6x
speedup compared to the baseline only optimized by Vivado HLS.
Furthermore, ScaleHLS allows to tune the optimization level n from
1 to 6 for loop and graph optimizations, which enables to explore the
trade-off space between area and speedup. The experimental results
show that through the effective representation and optimization of
large HLS designs in MLIR, ScaleHLS can significantly improve the
hardware performance, resource efficiency, and the productivity of
designing HLS-based hardware accelerators.

ACKNOWLEDGMENTS

We thank Eric Cheng of Laboratory for Physical Sciences (LPS),
Stephen Neuendorffer of Xilinx, and Samuel Bayliss of Xilinx for
insightful discussions. This work is supported by LPS and Xilinx.

ScaleHLS: Achieving Scalable High-Level Synthesis through MLIR

REFERENCES

(1]

Yao Chen, Jiong He, Xiaofan Zhang, Cong Hao, and Deming Chen. 2019. Cloud-
DNN: An open framework for mapping DNN models to cloud FPGAs. In Proceed-
ings of the 2019 ACM/SIGDA international symposium on field-programmable gate
arrays. 73-82.

MLIR contributors. 2021. MLIR: Multi-Level Intermediate Representation. https:
//github.com/llvm/llvm- project/tree/main/mlir.

ONNX contributors. 2021. ONNX: Open Neural Network Exchange. https:
//github.com/onnx/onnx.

Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and
Zhiru Zhang. 2018. Fast and accurate estimation of quality of results in high-
level synthesis with machine learning. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
129-132.

Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-traversing
design space exploration for high level synthesis. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 210-217.

Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,
Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.
arXiv preprint arXiv:2002.11054 (2020).

Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and
Deming Chen. 2016. High level synthesis of complex applications: An H. 264
video decoder. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 224-233.

Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi,
Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad.
2019. Pyramid: Machine Learning Framework to Estimate the Optimal Timing
and Resource Usage of a High-Level Synthesis Design. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 397-403.
Kenneth O’Neal, Mitch Liu, Hans Tang, Amin Kalantar, Kennen DeRenard, and
Philip Brisk. 2018. Hlspredict: Cross platform performance prediction for fpga
high-level synthesis. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 1-8.

[10

[11

[12

=
&

[14

[15

[16

[17

[18

]

LATTE ’21, April 15, 2021, Virtual, Earth

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems. 8026-8037.

Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level
synthesis: Promises and challenges. In 2011 9th IEEE International Conference on
ASIC. IEEE, 1102-1105.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510-4520.

Xiaofan Zhang, Anand Ramachandran, Chuanhao Zhuge, Di He, Wei Zuo, Zuofu
Cheng, Kyle Rupnow, and Deming Chen. 2017. Machine learning on FPGAs to
face the IoT revolution. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 894-901.

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng
He. 2017. COMBA: A comprehensive model-based analysis framework for high
level synthesis of real applications. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 430-437.

Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. 2016.
Lin-analyzer: a high-level performance analysis tool for FPGA-based accelerators.
In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1-6.
Wei Zuo, Warren Kemmerer, Jong Bin Lim, Louis-Noél Pouchet, Andrey Ayupov,
Taemin Kim, Kyungtae Han, and Deming Chen. 2015. A polyhedral-based Sys-
temC modeling and generation framework for effective low-power design space
exploration. In 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 357-364.

Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. 2013.
Improving high level synthesis optimization opportunity through polyhedral
transformations. In Proceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays. 9-18.

Wei Zuo, Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Chung-Wei Lin,
Shinichi Shiraishi, and Deming Chen. 2017. Accurate high-level modeling and au-
tomated hardware/software co-design for effective SoC design space exploration.
In Proceedings of the 54th Annual Design Automation Conference 2017. 1-6.

https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/onnx/onnx
https://github.com/onnx/onnx

