
HIDA: Hierarchical Dataflow Compiler for
High-Level Synthesis

Hanchen Ye, Hyegang Jun, Deming Chen
Nov. 8, 2023

● ScaleHLS Recap
● ScaleHLS Single-Kernel DSE
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

● ScaleHLS Recall
● ScaleHLS Single-Kernel DSE
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

How do we do HLS
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Recall: ScaleHLS Motivation

Generate RTL with and etc.

Pipeline II is 5 and overall latency is 183,296

How do we do HLS
designs?

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Recall: ScaleHLS Motivation (Cont.)

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

MatMul

Sample

CONV

Input

MatMul

IP

Input

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

Recall: ScaleHLS Motivation (Cont.)

How do we do HLS
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple

levels of abstractions

● Make the multi-level optimizations
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and
optimization flow

Solve problems at
the ‘correct’ level
AND automate it

Manual Code RewritingMatMul

Sample

CONV

Input

MatMul

IP

Input

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

Recall: ScaleHLS Motivation (Cont.)

Represent It!

Graph-level IR: TOSA, Linalg, and Tensor dialect.

Loop-level IR: Affine and Memref dialect. Can
leverage the transformation and analysis libraries
applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and Memref.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

Recall: ScaleHLS Framework

[1] Polygeist: C/C++ frontend for MLIR. https://github.com/wsmoses/Polygeist
[2] Torch-MLIR: PyTorch frontend for MLIR: https://github.com/llvm/torch-mlir
[3] CIRCT: Circuit IR Compilers and Tools https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

Recall: ScaleHLS Optimizations

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

Recall: ScaleHLS Optimizations (Cont.)
Transform and Analysis Library

● Apart from the optimizations, ScaleHLS provides a QoR
estimator based on an ALAP scheduling algorithm. The
memory ports are considered as non-shareable
resources and constrained in the scheduling.

● The interfaces of all optimization passes and the QoR
estimator are packaged into a library, which can be
called by the DSE engine to generate and evaluate
design points.

● ScaleHLS Recall
● ScaleHLS Single-Kernel DSE
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

Design Space Exploration - Observation

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

5. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

We have an ‘estimated’
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

● ScaleHLS Recall
● ScaleHLS Single-Kernel DSE
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

Graph
Optimizations

MatMul

Sample

CONV

Input

MatMul

IP

Input

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Directive
Optimizations

Step (1) Local single-kernel loop and directive DSE

Band0

Pareto
Merge
Iter. 0

Band1

Band2

Band4

Band3 Pareto
Merge
Iter. 1

Call Graph

Step (2) Global multi-kernel Pareto curving merging

Motivation: Limitations of ScaleHLS DSE

Inter-kernel Correlation

● Node0 is connected to Node2 through buffer A
○ If buffer A is on-chip, the partition strategy

of A is HIGHLY correlated with the parallel
strategies of both Node0 and Node2

● Node1 is connected to Node2 through buffer B
○ Same as above

Simply merging the local Pareto curves will not work well!

Connectedness

Intensity

Motivation: Limitations of ScaleHLS DSE (Cont.)

● Node0, 1, and 2 have different trip count: 32*16,
16*16, and 16*16*16

○ To enable efficient pipeline execution of
Node0, 1, and 2, their latencies after
parallelization should be similar

Motivation: Designing dataflow architecture is hard!

Manual LeNet Accelerator Design

● Layer fusion
○ Convolutional layer
○ ReLU layer
○ Max pooling layer

● Parallelization
○ Batch size
○ KPF (Kernel parallel factor)
○ CPF (Channel parallel factor)

● Layer fusion and parallelization decisions are
made empirically

○ The resulting design space still has
24,000 design points

Motivation: Designing dataflow architecture is hard! (Cont.)

● Dataflow designs are Pareto-
dominating

● Dataflow cannot guarantee a
good trade-off

● Dataflow design space is difficult
to comprehend

● Automated tool outperforms
exhaustive search

Productivity Performance Scalability

● ScaleHLS Recall
● ScaleHLS Single-Kernel DSE
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

HIDA Framework

● PyTorch or C/C++ as input

● Optimized C++ dataflow design as output

● MLIR-based dataflow intermediate
representation (IR), optimization, and
code-generation

HIDA Intermediate Representation

High-level
Dataflow

Optimizations

Task fusion
Task splitting

… …

Low-level
Dataflow

Optimizations

Parallelization
Buffer optimization

Data movement
… …

Two-level dataflow representation

● Functional dataflow
○ Capture high-level dataflow characteristics
○ Efficient dataflow manipulation

● Structural dataflow
○ Capture low-level micro-architectures
○ Efficient scheduling and parallelization

HIDA Functional Dataflow

Functional Dataflow
● Hierarchical structure

○ Support multiple levels of dataflow
○ Inside of Task6, the tile load, computation,

and store are further dataflowed

● Transparent from above
○ All tasks share the same global context
○ Support efficient task fusion and splitting

HIDA Structural Dataflow

Structural Dataflow
● Explicit buffer representation

○ Support both memory-mapped and stream
buffers

● Isolated from above
○ Each node has its own context
○ Decouple inter-node and intra-node

dataflow optimization

HIDA Structural Dataflow (Cont.)

● Multi-stage buffer representation
○ Support complicated schedulings, e.g., multi-line buffer

● Affine-based partition, tiling, and vectorization representation
○ Support automatic buffer optimization upon affine analyses

● Explicit buffer memory effect representation
○ Avoid unnecessary inter-node analysis

* buffer, stream, and node operation syntax in structural dataflow. RO and RW denote read-only and read-write.

Integration with MLIR Dialects

● ScaleHLS Recall
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

Multiple Producer Elimination

Buffer inside of the context

Multiple Producer Elimination

Buffer inside of the context

Multiple Producer Elimination

Buffer inside of the context Buffer outside of the context

Multiple Producer Elimination

Buffer inside of the context Buffer outside of the context

Data Paths Balancing

Data Paths Balancing

On-chip balancing

Data Paths Balancing

On-chip balancing Off-chip balancing

HIDA Design Space Exploration

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

0

1
∅

0
2

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

● Scaling Map
○ Record the alignment between strides

● Affine Analysis-based
○ Demand preprocessing: Loop normalize

and perfectize, memory canonicalize

∅
1

0.5
1

2

HIDA Design Space Exploration (Cont.)

Step (2) Node Sorting

Node Connectedness Intensity
Node0 1 512

Node1 1 256

Node2 2 4096

● Descending Order of Connectedness
○ Higher-connectedness node will affect

more nodes

● Intensity as Tie-breaker
○ Higher-intensity nodes are more

computationally complex, being more
sensitive to optimization

● Order: Node2 -> Node0 -> Node1

HIDA Design Space Exploration (Cont.)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]
○ Overall parallel factor is 32
○ ScaleHLS DSE without constraints
○ Solution unroll factors: [4, 8, 1]

HIDA Design Space Exploration (Cont.)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]
○ Overall parallel factor is 4, calculated from

intensities of Node0 and 2 (32*512/4096)
○ ScaleHLS DSE with connectedness

constraints, the unroll factors must NOT
be mutually indivisible with constraints

■ Multiply with scaling map:
■ [4, 8, 1] ⊙ [2, ∅, 1] = [8, ∅, 1]
■ Permute with permutation map:
■ permute([8, ∅, 1], [0, 2] = [8, 1]

○ Solution unroll factors: [4, 1]

HIDA Design Space Exploration (Cont.)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]

● Node1 Parallelization: [1, 2]
○ Overall parallel factor is 2, calculated from

intensities of Node0 and 1 (32*256/4096)
○ ScaleHLS DSE with connectedness

constraints
○ Solution unroll factors: [1, 2]

HIDA Design Space Exploration (Cont.)

Step (3) Node Parallelization

Intensity-aware (IA)
Connectedness-aware (CA)

HIDA DSE

Naive
ScaleHLS

DSE

8x
8x
1x

HIDA Design Space Exploration (Cont.)

● ScaleHLS Recall
● Motivation
● HIDA Intermediate Representation
● HIDA Optimizations
● Evaluation Results
● Conclusion

Outline

ResNet-18 Ablation Study on HIDA

(a)

3.7X

(b)

1.2X

(c)

44.3X

● IA+CA parallelization can determine
whether the solution is scalable

(a)

4.5X

(b)

4.7X

(c)

1.0X

● IA+CA parallelization can determine
whether the solution is scalable

● IA+CA parallelization can significantly
reduce resource utilization

ResNet-18 Ablation Study on HIDA (Cont.)

HIDA Results on DNN Models

HIDA Results on DNN Models

● HIDA cannot directly work on LLM models because:
○ In HIDA, intermediate results must be FULLY buffered on chip, or be swapped to external

memory and swapped back.
○ On-chip SRAMs are not enough for holding the huge intermediate results in LLMs.
○ External memory bandwidth is often insufficient as well.

● Streaming is way to go, for FPGA-style architectures:
○ By overlapping the execution of dataflow nodes, we can only hold partial results (a single tile

or multiple tiles) on chip.
○ By enabling streaming between dataflow nodes, we can significantly reduce the external

memory bandwidth utilization.
○ We are developing a compiler on top of HIDA that can automatically infer streaming channels

between dataflow nodes and minimize the partial results we need to hold on chip. We expose
python APIs to control tiling sizes of each dataflow node and leave tiling sizes exploration to
future works.

What’s next?

