
A Resource-Sharing & Pipelined Design Scheme for Dynamic

Deployment of CNNs on FPGAs

Han-Chen Ye, Geng-Sheng Chen*

State Key Laboratory of ASIC and System, Fudan University, No.825 Zhangheng Road, Shanghai, 201203, China

* Email: gschen@fudan.edu.cn

Abstract

In this paper, we present a new design scheme for

dynamic deployment of CNNs on FPGAs, to adaptively

implement large CNN models on resource limited FPGAs

while keeping low latency and high performance. We first

propose a FPGA-based pipeline model named Resource-

Sharing Pipeline in the design scheme. The novel pipeline

model dynamically reconfigures pipeline stages to FPGA

so that FPGA resources are shared by multiple pipeline

stages at the different time. The computing parallelism of

convolutional layers and the memory access efficiency are

also optimized in the design scheme for performance and

latency enhancement. In experiment we map all

convolutional layers of VGG-16 to Xilinx VC709

platform using our new design scheme. The results show

that the implementation reaches a performance of a

187.0ms latency and an 820.8GOP/s throughput under

100MHz clock frequency, achieving a promising

promotion over previous works.

1. Introduction

Convolutional Neural Networks (CNN) are achieving

great success in lots of Artificial Intelligence (AI)

applications including image classification, speech

recognition and etc. Though GPU is still the most popular

device to accelerate CNNs, FPGA appears to be a more

promising alternative because of its flexibility and power

efficiency.

There are already many researches on FPGA-based

hardware accelerators. But limited by FPGA resources,

most of them had to implement a CNN model layer by

layer on FPGA, and made them compute sequentially [1-

4] or in a multi-FPGAs pipeline manner [5]. Other works

devoted to map all layers of a CNN model on one FPGA

chip and made them compute in a conventional pipeline

manner [7, 8]. But also due to the limitation of FPGA

resources, they could just deploy small CNN models (e.g.

AlexNet), and meanwhile had to reduce the parallelism of

each layer which resulted in high overall latency.

This paper proposes a novel design scheme for dynamic

deployment of CNNs on FPGAs. The new design scheme

provides with capability of mapping large CNN models

(e.g. VGG-16), meanwhile minimizing the overall latency.

This paper makes the following main contributions:

 We propose a novel resource-sharing pipeline model

which allows for mapping large CNNs with each

pipeline stage performing with a high parallelism.

 We use a specialized convolutional layer design to

optimize intra-layer latency and throughput.

Moreover, we propose a novel memory structure to

enable all pipeline stages efficiently access memory.

The rest of this paper is organized as follows: Section 2

presents the details of our design scheme. Section 3 gives

the experimental results. Section 4 makes the conclusion.

2. Design Scheme

2.1 Resource-Sharing Pipeline

Dynamic Partial Reconfiguration (DPR) is an FPGA

technology which allows for the dynamic update of user

logics in Partial Reconfigurable Blocks (PRB) while other

logics on FPGA stay active. In this paper, we use its

inherent resource-sharing mechanism to accelerate

CNN’s calculations.

0

1

-

-

0

1

2

-

0

1

2

3

4

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

0

5

6

7

D0

D0

D0

D0

D0

D0

D0

D0

D1

D1

D1

D1

D1

D1

D1

D1

D2

D2

D2

D2

D2

D2

D2

D3 D3 D3 D3 D3 D3

0

1

6

7D1

D2

D3

D4

Time

0
1
2
3

D0

D1

4
5
6
7

0
1
2
3
4
5
6
7

D2

D0

D1

D3

0 11 2

D0

D4
D5
D6
D7
D8

D9

0
1
2
3

D0
D1

4
5
6
7

D2

...

Time

D0

D1

D0

D1

D0

D1

D0

D1

...

Time

(a) Conventional Pipeline (b) No Pipeline

(c) RS-Pipeline

Figure 1. Resource-Sharing Pipeline

Figure 1 illustrates the using and non-using Resource-

Sharing Pipeline (RS-Pipeline) methods to map the same

8-pipeline-stage model on FPGA for a comparison.

Conventional pipeline showed in Figure 1(a) must map all

the 8 pipeline stages on FPGA which results in low

parallelism of each stage and high overall latency. Figure

1(b) shows the non-pipelined design method used in most

previous CNN accelerators. This method could achieve

higher overall performance than other 2 methods but

cannot map all the pipeline stages at one time.

Figure 1(c) shows how our 4-stage RS-Pipeline works in

this case. The 4-stage RS-Pipeline directly maps 8

pipeline stages to 4 PRBs on FPGA, where stage0 and

stage4 are mapped to PRB0, and so on. Each column in

Figure 1(c) presents the status of PRBs at that moment,

where white or grey indicates PRBs are in computing or

reconfiguring status. At the beginning, RS-Pipeline

transfers data D0 to PRB0 and computes stage0 of D0,

meanwhile reconfigures stage1 into PRB1. In the next

cycle, RS-Pipeline transfers D0 to PRB1 and D1 to PRB0,

meanwhile reconfigures stage2 into PRB2. RS-Pipeline

then computes and reconfigures in this manner until

finishing all data. Hence, there are always 3 PRBs in

computing status and 1 PRB in reconfiguring status on

FPGA. Note that one pending data is halted in every 3

cycles (e.g. D3) until stage0 is reconfigured into PRB0.

In this way, RS-Pipeline is able to fully utilize PRB’s

resources sharing between multiple pipeline stages with

each stage working in a high parallelism. Assuming that

the latency is inversely proportional to the resources

utilization with factor 𝑓 . If we implement an 𝑁 -stage

pipeline using 𝑀-stage RS-Pipeline, thus 1 pipeline stage

will utilize 1/𝑀 FPGA resources and have a 𝑓 ∙ 𝑀

latency. Then the overall latency is reduced from 𝑓 ∙ 𝑁2

to 𝑓 ∙ 𝑀𝑁. Meanwhile, in RS-Pipeline, there is always 1

PRB kept in reconfiguring status while other (𝑀 − 1)
PRBs are in computing status, which ideally will bring

about a 1/𝑀 loss in the overall performance.

2.2 Design of Data and Control Flow
Figure 2 shows a typical design architecture on FPGA.

Here, PRC (Partial Reconfiguration Controller) is

responsible for loading bitstream files from DDR and

reconfiguring them to target PRBs. For the data flow, host

CPU downloads original data to DDR, then computing

modules in PRBs fetch data from DDR and write back

results after computing. For the control flow, a

MicroBlaze MCU is used to handle the complicated

process of RS-Pipeline. The use of MCU reduces the

frequency of high-latency communication between host

CPU and FPGA.

PRB

0
PRB

1
PRB

2
PRB

3

MCU

PRC

Host

CPU

DDR

Inter-

face

FPGA

PCIe

Inter-

face

Figure 2. Design

Architecture

PRB0
input

PRB1
input

PRB2
input

PRB3
input

DDR0 DDR1

bit file bit filePRC
input

output PRB

0
PRB

1
PRB

2
PRB

3
Figure 3. Memory

Structure Design

2.3 Memory Structure Design

Memory bandwidth and DSPs are usually the bottleneck

of overall performance in CNN accelerators. In our design

scheme, both computing modules and PRC need to

occupy DDR bandwidth, which makes a high-efficiency

memory structure more important.

We propose a novel memory structure design as showed

in Figure 3. Computing modules in even PRBs always

fetch original data from DDR0 and write results to DDR1

while odd PRBs work inversely. Double-buffer

technology is used in each DDR to avoid data confliction.

What’s more, bitstream files of even PRBs and odd PRBs

are stored respectively in DDR0 and DDR1 so that PRC

can always use the unoccupied bandwidth of the

reconfiguring PRB.

2.4 Convolutional Layer Design
To balance the latency between reconfiguring and

computing manipulations, an optimized convolutional

layer design is used. We unroll the input channels loop by

𝑃𝐼 and output channels loop by 𝑃𝑂 . The minimized

processing unit (PE) is therefore duplicated by 𝑃𝐼 × 𝑃𝑂

times. The input buffer, output buffer, weight buffer is

accordingly divided into 𝑃𝐼, 𝑃𝑂, 𝑃𝐼 × 𝑃𝑂 dimensions

to feed data to PEs. For all buffers in the design, we use

double-buffer technology to ensure that the memory

read/write and the PE’s calculation are able to process

concurrently. Benefited from using this design structure,

we are able to adaptively scale 𝑃𝐼 and 𝑃𝑂 to optimize

the parallelism of each convolutional layer.

3. Experiments and Analysis

To validate the latency and performance of our design

scheme, VGG-16 is used as our sample target. We use a

2-D Winograd algorithm, a fast convolution algorithm

widely used in digital signal processing applications [9],

to implement convolutional layers of VGG-16. We use a

Xilinx VC709 FPGA board for our experiments, which

has 3600 DSPs, Gen2 x8 PCI-e and two 2GB DDR3. To

measure the runtime power, we plugged a power meter in

the FPGA platform.

3.1 VGG-16 Model Analysis

Our design scheme has 3 major parameters: 𝑀, 𝑃𝐼, 𝑃𝑂.

We use VGG-16’s CONV3-1 (the first convolutional

layer of CONV3) as the sample to estimate and obtain

these 3 optimized parameters for VGG-16 mapping. We

scale 𝑃𝐼 and 𝑃𝑂 to adjust the parallelism of the layer,

then measure computing latency, reconfiguring latency,

and memory bandwidth along with parallelism under

100MHz clock frequency.

Figure 4 shows the result of the experiment. With the

parallelism increasing, the computing latency decrease

and the reconfiguring latency increase. In the case when

𝑃𝐼 = 4 and 𝑃𝑂 = 2 , the computing latency and the

reconfiguring latency are both about 9000us and memory

bandwidth occupation for one DDR is about 13%. Thus,

we use 𝑃𝐼 = 4, 𝑃𝑂 = 2 and 𝑀 = 6 for VGG-16.

In the case when 𝑃𝐼 = 8 and 𝑃𝑂 = 4, the layer is too

large to be placed into one PRB, so in this case we tune

down the clock frequency to 85MHz. In the case when

𝑃𝐼 = 2 and 𝑃𝑂 = 2, reconfiguring latency is similar to

𝑃𝐼 = 4 and 𝑃𝑂 = 2 because LUTs utilization does not

significantly decrease, this overhead also makes 𝑃𝐼 = 4

and 𝑃𝑂 = 2 an optimal choice for VGG-16.

Figure 4. Parallelism vs. Latency and Bandwidth

3.2 VGG-16 Case Study

We implement all convolutional layers of VGG-16 on

Xilinx VC709 platform. We divide all convolutional

layers except CONV1-1 into 18 pipeline stages because

CONV1-1’s input feature size is too small to be pipelined.

The layout of the last 6 pipeline stages is showed in Figure

5(a). The layout of static circuits (contains PCI-e, DDR

interface, MCU, PRC and etc.) is showed in Figure 5(b),

where the dark circuits have been locked to keep static in

the place and route process.

(a) Layout of Last 6

Pipeline Stages

(b) Layout of the Locked

Static Circuits

Figure 5. FPGA Layout of VGG-16

Table 1 shows the FPGA resource utilization, where

Config0, Config1, Config2 stand for the first, the second

and the last 6 pipeline stages.

Table 1. FPGA Resource Utilization

Resource LUTs Registers BRAMs DSPs

Static 89786 (21%) 88305 (10%) 299 (20%) 36 (1%)

Config0 297507 (69%) 144697 (17%) 1283 (87%) 1764 (49%)

Config1 295269 (69%) 144391 (17%) 1283 (87%) 1764 (49%)

Config2 300680 (70%) 150222 (17%) 1271 (86%) 1764 (49%)

Table 2 shows that the performance and latency of our

work are out of most of previous works except a highly

customized design [6]. Paper [4] reported a lower latency

than us because it reused the convolution engine on chip

to compute multiple convolutional layers which is a

coarse-grain reconfigurable computing method and

cannot be applied to other models. Our implementation

reaches a 187.0ms latency and an 820.8GOP/s throughput

under 100MHz frequency, achieves a promising

promotion over previous works.

Table 2. Comparison with Previous Works for VGG-16

FCCM

2017 [6]

FPGA

2017 [4]

FPGA

2016 [2]

ISLPED

2016 [5]
This Work

Platform
Xilinx

ZCU102

Arria-10 GX

1150

Altera Stratix-

V GSD8
Xilinx VC709 Xilinx VC709

DSPs 2520 1518 1963* 3600* 1764

Freq (MHz) 200 150 120 150 100

Precision 16b fixed 8-16b fixed 8-16b fixed 16b fixed 16b fixed

Throughput

(GOP/s)
2940.7 645.25 117.8 290 820.8

Latency (ms) - 47.97 262.9 213.6 187.0

Power (W) 23.6 - 25.8 35 27.1

DSPs

Efficiency

(GOP/s/DSPs)

1.16 0.425 0.06 0.08 0.465

Energy

Efficiency

(GOP/s/W)

124.6 - 4.57 8.29 30.29

4. Conclusion

In this paper, we present a new design scheme for

dynamic deployment of CNNs on FPGAs, which helps to

adaptively deploy large CNN models on resource limited

FPGAs while keeping low latency and high performance.

The results show that the implementation of VGG-16 by

using our new design scheme has successfully reached a

performance of a 187.0ms latency and an 820.8GOP/s

throughput under 100MHz clock frequency, achieving a

promising promotion over previous works.

References

[1] J. Qiu, et al., International Symposium on Field-

Programmable Gate Arrays (FPGA), p. 26-35 (2016).

[2] N. Suda, et al., International Symposium on Field-

Programmable Gate Arrays (FPGA), p. 16-25 (2016).

[3] C. Zhang, et al., International Conference on

Computer-Aided Design (ICCAD), pp. 1-8 (2016).

[4] Y. Ma, et al., International Symposium on Field-

Programmable Gate Arrays (FPGA), p. 45-54 (2017).

[5] C. Zhang, et al., International Symposium on Low

Power Electronics and Design (ISLPED), p. 326-331

(2016).

[6] L. Lu, et al., International Symposium on Field-

Programmable Custom Computing Machines (FCCM),

pp. 101-108 (2017).

[7] C. Huang, et al., International Conference on ASIC

(ASICON), pp. 1037-1040 (2017).

[8] H. Li, et al., International Conference on Field

Programmable Logic and Applications (FPL), pp. 1-9

(2016).

[9] A. Lavin and S. Gray, arXiv: 1509.09308v2, (2015).

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

P I = 2

P O = 2

P I = 4

P O = 2

P I = 4

P O = 4

P I = 8

P O = 4

B
an

d
w

id
th

(%
 o

f
1
2
.5

 G
B

/s
)

L
at

en
cy

 (
m

s)

Latency_comp Latency_reconfig Bandwidth

