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Abstract 

In this paper, we present a new design scheme for 

dynamic deployment of CNNs on FPGAs, to adaptively 

implement large CNN models on resource limited FPGAs 

while keeping low latency and high performance. We first 

propose a FPGA-based pipeline model named Resource-

Sharing Pipeline in the design scheme. The novel pipeline 

model dynamically reconfigures pipeline stages to FPGA 

so that FPGA resources are shared by multiple pipeline 

stages at the different time. The computing parallelism of 

convolutional layers and the memory access efficiency are 

also optimized in the design scheme for performance and 

latency enhancement. In experiment we map all 

convolutional layers of VGG-16 to Xilinx VC709 

platform using our new design scheme. The results show 

that the implementation reaches a performance of a 

187.0ms latency and an 820.8GOP/s throughput under 

100MHz clock frequency, achieving a promising 

promotion over previous works. 

 

1. Introduction 

Convolutional Neural Networks (CNN) are achieving 

great success in lots of Artificial Intelligence (AI) 

applications including image classification, speech 

recognition and etc. Though GPU is still the most popular 

device to accelerate CNNs, FPGA appears to be a more 

promising alternative because of its flexibility and power 

efficiency.  

There are already many researches on FPGA-based 

hardware accelerators. But limited by FPGA resources, 

most of them had to implement a CNN model layer by 

layer on FPGA, and made them compute sequentially [1-

4] or in a multi-FPGAs pipeline manner [5]. Other works 

devoted to map all layers of a CNN model on one FPGA 

chip and made them compute in a conventional pipeline 

manner [7, 8]. But also due to the limitation of FPGA 

resources, they could just deploy small CNN models (e.g. 

AlexNet), and meanwhile had to reduce the parallelism of 

each layer which resulted in high overall latency. 

This paper proposes a novel design scheme for dynamic 

deployment of CNNs on FPGAs. The new design scheme 

provides with capability of mapping large CNN models 

(e.g. VGG-16), meanwhile minimizing the overall latency. 

This paper makes the following main contributions: 

 We propose a novel resource-sharing pipeline model 

which allows for mapping large CNNs with each 

pipeline stage performing with a high parallelism. 

 We use a specialized convolutional layer design to 

optimize intra-layer latency and throughput. 

Moreover, we propose a novel memory structure to 

enable all pipeline stages efficiently access memory. 

The rest of this paper is organized as follows: Section 2 

presents the details of our design scheme. Section 3 gives 

the experimental results. Section 4 makes the conclusion. 

 

2. Design Scheme 

2.1 Resource-Sharing Pipeline 

Dynamic Partial Reconfiguration (DPR) is an FPGA 

technology which allows for the dynamic update of user 

logics in Partial Reconfigurable Blocks (PRB) while other 

logics on FPGA stay active. In this paper, we use its 

inherent resource-sharing mechanism to accelerate 

CNN’s calculations. 
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Figure 1. Resource-Sharing Pipeline 

 

Figure 1 illustrates the using and non-using Resource-

Sharing Pipeline (RS-Pipeline) methods to map the same 

8-pipeline-stage model on FPGA for a comparison. 

Conventional pipeline showed in Figure 1(a) must map all 

the 8 pipeline stages on FPGA which results in low 

parallelism of each stage and high overall latency. Figure 

1(b) shows the non-pipelined design method used in most 

previous CNN accelerators. This method could achieve 

higher overall performance than other 2 methods but 

cannot map all the pipeline stages at one time. 

Figure 1(c) shows how our 4-stage RS-Pipeline works in 

this case. The 4-stage RS-Pipeline directly maps 8 

pipeline stages to 4 PRBs on FPGA, where stage0 and 



stage4 are mapped to PRB0, and so on. Each column in 

Figure 1(c) presents the status of PRBs at that moment, 

where white or grey indicates PRBs are in computing or 

reconfiguring status. At the beginning, RS-Pipeline 

transfers data D0 to PRB0 and computes stage0 of D0, 

meanwhile reconfigures stage1 into PRB1. In the next 

cycle, RS-Pipeline transfers D0 to PRB1 and D1 to PRB0, 

meanwhile reconfigures stage2 into PRB2. RS-Pipeline 

then computes and reconfigures in this manner until 

finishing all data. Hence, there are always 3 PRBs in 

computing status and 1 PRB in reconfiguring status on 

FPGA. Note that one pending data is halted in every 3 

cycles (e.g. D3) until stage0 is reconfigured into PRB0. 

In this way, RS-Pipeline is able to fully utilize PRB’s 

resources sharing between multiple pipeline stages with 

each stage working in a high parallelism. Assuming that 

the latency is inversely proportional to the resources 

utilization with factor 𝑓 . If we implement an 𝑁 -stage 

pipeline using 𝑀-stage RS-Pipeline, thus 1 pipeline stage 

will utilize 1/𝑀  FPGA resources and have a 𝑓 ∙ 𝑀 

latency. Then the overall latency is reduced from 𝑓 ∙ 𝑁2 

to 𝑓 ∙ 𝑀𝑁. Meanwhile, in RS-Pipeline, there is always 1 

PRB kept in reconfiguring status while other (𝑀 − 1) 
PRBs are in computing status, which ideally will bring 

about a 1/𝑀 loss in the overall performance.  

 

2.2 Design of Data and Control Flow 
Figure 2 shows a typical design architecture on FPGA. 

Here, PRC (Partial Reconfiguration Controller) is 

responsible for loading bitstream files from DDR and 

reconfiguring them to target PRBs. For the data flow, host 

CPU downloads original data to DDR, then computing 

modules in PRBs fetch data from DDR and write back 

results after computing. For the control flow, a 

MicroBlaze MCU is used to handle the complicated 

process of RS-Pipeline. The use of MCU reduces the 

frequency of high-latency communication between host 

CPU and FPGA. 
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2.3 Memory Structure Design 

Memory bandwidth and DSPs are usually the bottleneck 

of overall performance in CNN accelerators. In our design 

scheme, both computing modules and PRC need to 

occupy DDR bandwidth, which makes a high-efficiency 

memory structure more important. 

We propose a novel memory structure design as showed 

in Figure 3. Computing modules in even PRBs always 

fetch original data from DDR0 and write results to DDR1 

while odd PRBs work inversely. Double-buffer 

technology is used in each DDR to avoid data confliction. 

What’s more, bitstream files of even PRBs and odd PRBs 

are stored respectively in DDR0 and DDR1 so that PRC 

can always use the unoccupied bandwidth of the 

reconfiguring PRB. 

 

2.4 Convolutional Layer Design 
To balance the latency between reconfiguring and 

computing manipulations, an optimized convolutional 

layer design is used. We unroll the input channels loop by 

𝑃𝐼  and output channels loop by 𝑃𝑂 . The minimized 

processing unit (PE) is therefore duplicated by 𝑃𝐼 × 𝑃𝑂 

times. The input buffer, output buffer, weight buffer is 

accordingly divided into 𝑃𝐼, 𝑃𝑂, 𝑃𝐼 × 𝑃𝑂 dimensions 

to feed data to PEs. For all buffers in the design, we use 

double-buffer technology to ensure that the memory 

read/write and the PE’s calculation are able to process 

concurrently. Benefited from using this design structure, 

we are able to adaptively scale 𝑃𝐼 and 𝑃𝑂 to optimize 

the parallelism of each convolutional layer. 

 

3. Experiments and Analysis 

To validate the latency and performance of our design 

scheme, VGG-16 is used as our sample target. We use a 

2-D Winograd algorithm, a fast convolution algorithm 

widely used in digital signal processing applications [9], 

to implement convolutional layers of VGG-16. We use a 

Xilinx VC709 FPGA board for our experiments, which 

has 3600 DSPs, Gen2 x8 PCI-e and two 2GB DDR3. To 

measure the runtime power, we plugged a power meter in 

the FPGA platform. 

 

3.1 VGG-16 Model Analysis 

Our design scheme has 3 major parameters: 𝑀, 𝑃𝐼, 𝑃𝑂. 

We use VGG-16’s CONV3-1 (the first convolutional 

layer of CONV3) as the sample to estimate and obtain 

these 3 optimized parameters for VGG-16 mapping. We 

scale 𝑃𝐼 and 𝑃𝑂 to adjust the parallelism of the layer, 

then measure computing latency, reconfiguring latency, 

and memory bandwidth along with parallelism under 

100MHz clock frequency. 

Figure 4 shows the result of the experiment. With the 

parallelism increasing, the computing latency decrease 

and the reconfiguring latency increase. In the case when 

𝑃𝐼 = 4  and 𝑃𝑂 = 2 , the computing latency and the 

reconfiguring latency are both about 9000us and memory 

bandwidth occupation for one DDR is about 13%. Thus, 

we use 𝑃𝐼 = 4, 𝑃𝑂 = 2 and 𝑀 = 6 for VGG-16. 

In the case when 𝑃𝐼 = 8 and 𝑃𝑂 = 4, the layer is too 

large to be placed into one PRB, so in this case we tune 

down the clock frequency to 85MHz. In the case when 

𝑃𝐼 = 2 and 𝑃𝑂 = 2, reconfiguring latency is similar to 



𝑃𝐼 = 4 and 𝑃𝑂 = 2 because LUTs utilization does not 

significantly decrease, this overhead also makes 𝑃𝐼 = 4 

and 𝑃𝑂 = 2 an optimal choice for VGG-16. 

 

 
Figure 4. Parallelism vs. Latency and Bandwidth 

 

3.2 VGG-16 Case Study 

We implement all convolutional layers of VGG-16 on 

Xilinx VC709 platform. We divide all convolutional 

layers except CONV1-1 into 18 pipeline stages because 

CONV1-1’s input feature size is too small to be pipelined. 

The layout of the last 6 pipeline stages is showed in Figure 

5(a). The layout of static circuits (contains PCI-e, DDR 

interface, MCU, PRC and etc.) is showed in Figure 5(b), 

where the dark circuits have been locked to keep static in 

the place and route process. 

 

  
(a) Layout of Last 6 

Pipeline Stages 

(b) Layout of the Locked 

Static Circuits 

Figure 5. FPGA Layout of VGG-16 

 

Table 1 shows the FPGA resource utilization, where 

Config0, Config1, Config2 stand for the first, the second 

and the last 6 pipeline stages. 

 

Table 1. FPGA Resource Utilization 

Resource LUTs Registers BRAMs DSPs 

Static 89786 (21%) 88305 (10%) 299 (20%) 36 (1%) 

Config0 297507 (69%) 144697 (17%) 1283 (87%) 1764 (49%) 

Config1 295269 (69%) 144391 (17%) 1283 (87%) 1764 (49%) 

Config2 300680 (70%) 150222 (17%) 1271 (86%) 1764 (49%) 

 

Table 2 shows that the performance and latency of our 

work are out of most of previous works except a highly 

customized design [6]. Paper [4] reported a lower latency 

than us because it reused the convolution engine on chip 

to compute multiple convolutional layers which is a 

coarse-grain reconfigurable computing method and 

cannot be applied to other models. Our implementation 

reaches a 187.0ms latency and an 820.8GOP/s throughput 

under 100MHz frequency, achieves a promising 

promotion over previous works. 

 

Table 2. Comparison with Previous Works for VGG-16 

 
FCCM 

2017 [6] 

FPGA 

2017 [4] 

FPGA 

2016 [2] 

ISLPED 

2016 [5] 
This Work 

Platform 
Xilinx 

ZCU102 

Arria-10 GX 

1150 

Altera Stratix-

V GSD8 
Xilinx VC709 Xilinx VC709 

DSPs 2520 1518 1963* 3600* 1764 

Freq (MHz) 200 150 120 150 100 

Precision 16b fixed 8-16b fixed 8-16b fixed 16b fixed 16b fixed 

Throughput 

(GOP/s) 
2940.7 645.25 117.8 290 820.8 

Latency (ms) - 47.97 262.9 213.6 187.0 

Power (W) 23.6 - 25.8 35 27.1 

DSPs 

Efficiency 

(GOP/s/DSPs) 

1.16 0.425 0.06 0.08 0.465 

Energy 

Efficiency 

(GOP/s/W) 

124.6 - 4.57 8.29 30.29 

 

4. Conclusion 

In this paper, we present a new design scheme for 

dynamic deployment of CNNs on FPGAs, which helps to 

adaptively deploy large CNN models on resource limited 

FPGAs while keeping low latency and high performance. 

The results show that the implementation of VGG-16 by 

using our new design scheme has successfully reached a 

performance of a 187.0ms latency and an 820.8GOP/s 

throughput under 100MHz clock frequency, achieving a 

promising promotion over previous works. 
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