SRC @ ICCAD ILLINOIS

vHLS: Verifiable and Efficient High-Level Synthesis

Hanchen Ye, Deming Chen UIUC (University of Illinois at Urbana-Champaign)

Challenges and Motivation

HLS (High-Level Synthesis) has a great potential to continue to drive the high-productivity designs of circuits with high-density, high-energy efficiency, and short design cycle. However:

a

- Large-scale designs make it very challenging to comprehensively explore the large design space of different algorithmic choices and lead to sub-optimal design solutions -> Efficiency.
- Due to the complicated functionality and hardware hierarchy, verification properties are difficult to establish while the complexity of correctness proving restricts the scalability -> Verification.

	Graph Optimization	Dataflow PipelineNode MergingIP Integration	
1			
	Loop Optimization	 Loop Tiling Loop Unroll and Jam Loop Perfectization 	
			Intermediate
	Directive Optimization	Loop PipelineArray PartitionPrimitive Integration	Representation

Marry HLS and MLIR

- Abstract HLS designs into multiple representation levels
- Solve the HLS optimization problems at "correct" abstraction levels
- Enable comprehensive design space exploration for optimal solutions
- Promote the verification and transform of HLS designs as first-class citizens
- Leverage and **Contribute to Large Community:**
- intel 📀 NVIDIA.

... ...

First

Structure

Control

Payload

Data

Two-Level

Dataflow

ScaleHLS - HPCA'22, LATTE'21

ScaleFlow (WIP) - DAC'22, TRETS (under review)

ScaleHLS Optimization Results of ResNet-18

(c) Structural Dataflow

• Functional Dataflow: High-level IR without hardware details for fast dataflow construction and task partition

nodes, for comprehensive dataflow scheduling, optimization, and design space exploration

vHLS (WIP)

HybridDNN - DAC'20, DNNExplorer - ICCAD'20

analysis-based local

<pre>ans: int = xs[0] for i in range(1, len(xs)): fvl.invariant(0 <= i <= len(xs)) fvl.invariant(fvl.forall(</pre>	<pre>%c0 = arith.constant 0 : index %len = memref.dim %xs, %c0 : memr fv.require { %res = fv.for_all %x = %c0 to %iter_res = arith.cmpi uge, %x fv.vield %iter res : i1</pre>	<pre>correct-by- Construction HLS %len { , %c0 : index</pre> Construction HLS Design	2.0x - 4.4x Speedup Design Space Exploration: Two-phase DSE with analysis-base optimization and particle swarm-based global optimization 	
<pre>if ans < xs[i]: ans = xs[i] fvl.ensures(forall(x <= ans for x in xs)) return ans</pre>	<pre>// Rest of code }</pre>	Verification Transform	Open-Source Community	
<pre>(a) FVL (Formal Verification Lang.) @dtl.is_pattern(benefit=0) @dt def pattern(): def a = dtl.value(dtl.Int(8)) b = dtl.value(dtl.Int(8)) c = dtl.value(dtl.Int(32)) res = a * b + c loop_transform(res)</pre>	<pre>(b) FV (Formal Verificat i.is_transform loop_transform(res): loop = dtl.parent_loop(res) outer, inner = dtl.split(loop, 2) dtl.unroll(inner, 2) dtl.pipeline(outer)</pre>	 FVL: Formal verification language based on SMT theorem provers DTL: Design transform language based on hierarchical pattern matching and rewriting 	ScaleHLS GitHub Repository https://github.com/hanchenye/scalehls 19,164 Views and 1,842 Downloads since Feb. 1, 2022	

[1] HPCA'22, H. Ye, et al., ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation

[2] LATTE'21, H. Ye, et al., ScaleHLS: Achieving Scalable High-Level Synthesis through MLIR [3] **TRETS** (under review), H. Jun, **H. Ye, et al.**, AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level Synthesis

[4] DAC'22, H. Ye, et al., ScaleHLS: a Scalable High-Level Synthesis Framework with Multi-level Transformations and Optimizations

[5] DAC'20, H. Ye, et al., HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation [6] ICCAD'20, X. Zhang*, H. Ye*, et al., DNNExplorer: a framework for modeling and exploring a novel paradigm of FPGA-based DNN accelerator