
vHLS (WIP)

ScaleFlow (WIP) - DAC’22, TRETS (under review)

vHLS: Verifiable and Efficient High-Level Synthesis
Hanchen Ye, Deming Chen UIUC (University of Illinois at Urbana-Champaign)

SRC @ ICCAD

Challenges and Motivation

ScaleHLS - HPCA’22, LATTE’21

HybridDNN - DAC’20, DNNExplorer - ICCAD’20

[1] HPCA’22, H. Ye, et al., ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate
Representation
[2] LATTE’21, H. Ye, et al., ScaleHLS: Achieving Scalable High-Level Synthesis through MLIR
[3] TRETS (under review), H. Jun, H. Ye, et al., AutoScaleDSE: A Scalable Design Space Exploration Engine for High-Level
Synthesis

[4] DAC’22, H. Ye, et al., ScaleHLS: a Scalable High-Level Synthesis Framework with Multi-level Transformations and
Optimizations
[5] DAC’20, H. Ye, et al., HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation
[6] ICCAD’20, X. Zhang*, H. Ye*, et al., DNNExplorer: a framework for modeling and exploring a novel paradigm of
FPGA-based DNN accelerator

@fvl.method
def find_max_in_positive_seq(xs: seq[int]):

fvl.requires(fvl.forall(x >= 0 for x in xs))
 fvl.requires(len(xs) > 0)
 ans: int = xs[0]
 for i in range(1, len(xs)):
 fvl.invariant(0 <= i <= len(xs))
 fvl.invariant(fvl.forall(
 xs[j] <= ans for j in range(0, i)))
 if ans < xs[i]:
 ans = xs[i]
 fvl.ensures(forall(x <= ans for x in xs))

return ans

(a) FVL (Formal Verification Lang.)

func.func @find_max_in_positive_seq(
%xs: memref<128xindex>) -> index {

 // fvl.require(fvl.forall(x >= 0 for x in xs))
 %c0 = arith.constant 0 : index
 %len = memref.dim %xs, %c0 : memref<128xindex>
 fv.require {

%res = fv.for_all %x = %c0 to %len {
 %iter_res = arith.cmpi uge, %x, %c0 : index
 fv.yield %iter_res : i1

}
fv.yield %res : i1

 }
 // Rest of code...
}

(b) FV (Formal Verification) IR

First
Multi-Level HLS
Representation

Optimization
Exploration

● Fast Compilation
● Thorough DSE
● Efficient U-Arch

ScaleHLS Optimization Results of ResNet-18

First
Holistic HLS IR

Structure
Control
Payload

Data

Two-Level
Dataflow

● Functional Dataflow: High-level IR without hardware details for fast dataflow construction and task partition
● Structural Dataflow: Low-level IR with hardware details, such as the communication between dataflow

nodes, for comprehensive dataflow scheduling, optimization, and design space exploration

Correct-by-
Construction HLS

Design
Verification
Transform

@dtl.is_pattern(benefit=0)
def pattern():

a = dtl.value(dtl.Int(8))
b = dtl.value(dtl.Int(8))
c = dtl.value(dtl.Int(32))
res = a * b + c
loop_transform(res)

@dtl.is_transform
def loop_transform(res):

loop = dtl.parent_loop(res)
outer, inner = dtl.split(loop, 2)
dtl.unroll(inner, 2)
dtl.pipeline(outer)

(c) DTL (Design Transform Lang.)

● FVL: Formal verification language
based on SMT theorem provers

● DTL: Design transform language
based on hierarchical pattern
matching and rewriting

HLS-based Neural
Network Acceleration

2.0x - 4.4x Speedup

● Micro-Architecture: Hybrid architecture that supports both
Winograd and Spatial convolution; New accelerator paradigm
combining pipeline structure and generic structure

● Design Space Exploration: Two-phase DSE with analysis-based local
optimization and particle swarm-based global optimization

Open-Source Community

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

19,164 Views and 1,842 Downloads since Feb. 1, 2022

HLS (High-Level Synthesis) has a great potential to continue to drive the
high-productivity designs of circuits with high-density, high-energy efficiency,
and short design cycle. However:

● Large-scale designs make it very challenging to comprehensively explore the
large design space of different algorithmic choices and lead to sub-optimal
design solutions -> Efficiency.

● Due to the complicated functionality and hardware hierarchy, verification
properties are difficult to establish while the complexity of correctness
proving restricts the scalability -> Verification.

● Dataflow Pipeline
● Node Merging
● IP Integration

Graph Optimization

● Loop Tiling
● Loop Unroll and Jam
● Loop Perfectization

Loop Optimization

● Loop Pipeline
● Array Partition
● Primitive Integration

Directive Optimization

Marry HLS and MLIR

● Abstract HLS designs into multiple
representation levels

● Solve the HLS optimization problems at
“correct” abstraction levels

● Enable comprehensive design space
exploration for optimal solutions

● Promote the verification and transform
of HLS designs as first-class citizens

Multi-Level
Intermediate

Representation

Leverage and
Contribute to Large

Community:

… …

https://github.com/hanchenye/scalehls

