
StreamTensor: A Compiler from PyTorch to
FPGA for AI/ML Applications

Hanchen Ye12 (hanchen8@illinois.edu)
Deming Chen12 (dchen@illinois.edu)

1University of Illinois Urbana-Champaign 2Inspirit IoT

Hardware and Algorithm Co-development (HAC) Research Highlight
2024 NSF HDR Ecosystem Conference

Application Development on FPGA

Physicists
Researchers
Developers

C/C++
Model

PyTorch
Model

HLS/RTL
Design

FPGA
Toolchain

FPGA
Board

Library

Will this be possible?

Path to an E2E PyTorch-to-FPGA Flow

Start

ScaleHLS (2022)
Single-kernel
Optimization

HIDA (2024)
Multi-kernel
Optimization

StreamTensor
(Now)

E2E PyTorch-to-
FPGA Flow

ScaleHLS: Single-kernel Optimization
[1] Scalehls: A new scalable high-level synthesis framework on multi-level intermediate
representation, HPCA’22

[2] ScaleHLS: a scalable high-level synthesis framework with multi-level transformations and
optimizations, DAC’22

[3] High-level synthesis for domain specific computing, ISPD’23

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

Framework Overview

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

Inputs

C/C++ Polygeist [1]

PyTorch Torch-MLIR [2]

Outputs

C/C++ C/C++ Emitter

Verilog CIRCT [3]

(work-in-progress)

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

Front-end and Back-end

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design space,
the variance of Pareto points is much smaller than the
overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

Single-kernel Design Space Exploration

DSE results of PolyBench-C computation kernels
1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and 53,200

LUTs. The data types of all kernels are single-precision floating-points.
2. Among all six benchmarks, a speedup ranging from 41.7× to 768.1× is obtained compared to the baseline design,

which is the original computation kernel from PolyBench-C without the optimization of DSE.
3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.
4. In the Loop Order Optimization (Perm. Map), the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝 [𝑖],

where locations are from the outermost loop to inner.

Polybench Results

HIDA: Multi-kernel Optimization
[1] HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis, ASPLOS’24

[2] ScaleFlow: High-Level Synthesis for Large Dataflow Applications, TECHCON’23

Graph
Optimizations

MatMul

Sample

CONV

Input

MatMul

IP

Input

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline

if (k == 0)
C[i][j] *= beta;

 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {

if (k == 0)
C[i][j] *= beta;

 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Directive
Optimizations

Step (1) Local single-kernel loop and directive DSE

Band0

Pareto
Merge
Iter. 0

Band1

Band2

Band4

Band3 Pareto
Merge
Iter. 1

Call Graph

Step (2) Global multi-kernel Pareto curving merging

Multi-kernel Optimization in ScaleHLS

● Dataflow designs are Pareto-
dominating

● Dataflow cannot guarantee a
good trade-off

● Dataflow design space is
difficult to comprehend

● Automated tool outperforms
exhaustive search

Dataflow = Coarse-grained Pipeline between Kernels

Multi-kernel Optimization is Important but Difficult

● PyTorch or C/C++ as input

● Optimized C++ dataflow design as
output

● MLIR-based dataflow intermediate
representation (IR), optimization, and
code-generation

Framework Overview

High-level
Dataflow

Optimizations

Task fusion
Task splitting

… …

Low-level
Dataflow

Optimizations

Parallelization
Buffer optimization

Data movement
… …

Two-level dataflow representation

● Functional dataflow
○ Capture high-level dataflow

characteristics
○ Efficient dataflow manipulation

● Structural dataflow
○ Capture low-level micro-architectures
○ Efficient scheduling and parallelization

Two-level Dataflow Representation

Neural Networks Results

StreamTensor: Streaming-based Multi-
kernel Dataflow
Working in progress… Stay tuned!

Node 0

Node 1

Node 2

Node 0

Node 1

Node 2

Node 0

Node 1

Node 2

Node
0+1

Node 2

Node 0

Node
1+2

Choice
#1

Choice
#2

Not Fusible

Not Fusible

Which one to
choose?

Global optimal?

Kernel Fusion (Traditional)

Node 0

Node 1

Node 2

Node 0

Node 1

Node 2

Node 0

Stream
Buffer 0

Node 1

MM2S

Stream
Buffer 1

Node 2

S2MM

Kernels always
fusible by design

Constraint is on-
chip memory

● nodes
● stream buffers
● stream FIFOs

(if needed)

(if needed)

Fuse
them all

Compiler-
generated

data
moving
nodes

Kernel Fusion (with Streaming)

C++

PyTorch

Torch-MLIR

Linalg Optimization

Linalg Tiling

Linalg to Dataflow

Dataflow Kernel Fusion

Dataflow Optimization

Dataflow FIFO Sizing

Bufferization

PL Codegen

HLS C++

Runtime Codegen

Binary
Model

Parameters
v++ Link

g++

.xclbin

Connectivity
Config

XRT C++

Binary
Executable

Device

AIE Codegen

MLIR-AIE

LLVM-AIE v++ Compile

Linalg Tiling Space
● Tiling factors
● Unrolling factors
● Vectorization factors
● Permutation

Kernel Fusion Space
● Kernel fusion solution

FIFO Sizing Space
● Stream FIFO sizes

● Naive tiling
● Intensity-aware unrolling

and vectorization
● Naive permutation

● Greedy kernel fusion

● Linear-programming based
FIFO sizing

● End-to-end PyTorch-to-device flow
● Aggressive kernel fusion with streaming

○ Single kernel for a single Mistral-7b or Llama-
8b decoder layer on U55C

● Automated data movement generation
○ DMA, packing, and widening for HBMs
○ Vectorization, layout conversion, and sizing for

streaming FIFOs
● Pythonic user-level API

○ Passes and design spaces; auto-tuning-ready

Kernel
Library

(AIE/HLS)

Config Gen

default_tile_size
overall_unroll_factor

max_fusion_cost

dataflow_rewinding

Design Spaces Algorithms Hyper-parameters

Framework Overview

Mistral3-7B: From PyTorch to Board

Single Decoder Layer
Vocabulary size: 32000
Hidden size=4096
Intermediate size=14336
Number of hidden layers=32
Number of attention heads=32

AMD U55C FPGA
• All 48 kernels are fused into

one single kernel
• All fused kernels are executed

in a coarse-grained dataflow
pipeline

Resource Utilization

BRAM (16kb RAM) 3176

DSP 928

FF 261667

LUT 358433

URAM (256kb RAM) 779

Thanks!
Hanchen Ye12 (hanchen8@illinois.edu)

Deming Chen12 (dchen@illinois.edu)
1University of Illinois Urbana-Champaign 2Inspirit IoT

Hardware and Algorithm Co-development (HAC) Research Highlight
2024 NSF HDR Ecosystem Conference

	Slide 1: StreamTensor: A Compiler from PyTorch to FPGA for AI/ML Applications
	Slide 2: Application Development on FPGA
	Slide 3: Path to an E2E PyTorch-to-FPGA Flow
	Slide 4: ScaleHLS: Single-kernel Optimization
	Slide 5: Framework Overview
	Slide 6: Front-end and Back-end
	Slide 7: Single-kernel Design Space Exploration
	Slide 8
	Slide 9: HIDA: Multi-kernel Optimization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: StreamTensor: Streaming-based Multi-kernel Dataflow
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Mistral3-7B: From PyTorch to Board
	Slide 20: Thanks!

