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Will this be possible?



Path to an E2E PyTorch-to-FPGA Flow
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ScaleHLS: Single-kernel Optimization
[1] Scalehls: A new scalable high-level synthesis framework on multi-level intermediate 
representation, HPCA’22

[2] ScaleHLS: a scalable high-level synthesis framework with multi-level transformations and 
optimizations, DAC’22

[3] High-level synthesis for domain specific computing, ISPD’23



[1] Polygeist: https://github.com/wsmoses/Polygeist          [2] Torch-MLIR: https://github.com/llvm/torch-mlir          [3] CIRCT: https://github.com/llvm/circt

Framework Overview

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt


Inputs

C/C++   Polygeist [1]

PyTorch   Torch-MLIR [2]

Outputs

C/C++   C/C++ Emitter

Verilog   CIRCT [3]

(work-in-progress)

[1] Polygeist: https://github.com/wsmoses/Polygeist          [2] Torch-MLIR: https://github.com/llvm/torch-mlir          [3] CIRCT: https://github.com/llvm/circt

Front-end and Back-end

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt


● Each parameter of a pass becomes one dimension, the 
original 4-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design space, 
the variance of Pareto points is much smaller than the 
overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop 
tiling, loop pipelining, and array partition passes are 
involved

Single-kernel Design Space Exploration



DSE results of PolyBench-C computation kernels
1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and 53,200 

LUTs. The data types of all kernels are single-precision floating-points.
2. Among all six benchmarks, a speedup ranging from 41.7× to 768.1× is obtained compared to the baseline design, 

which is the original computation kernel from PolyBench-C without the optimization of DSE.
3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.
4. In the Loop Order Optimization (Perm. Map), the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝 [𝑖], 

where locations are from the outermost loop to inner.

Polybench Results



HIDA: Multi-kernel Optimization
[1] HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis, ASPLOS’24

[2] ScaleFlow: High-Level Synthesis for Large Dataflow Applications, TECHCON’23
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for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
#pragma HLS pipeline

if (k == 0)
C[i][j] *= beta;

      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {

if (k == 0)
C[i][j] *= beta;

      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
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Step (1) Local single-kernel loop and directive DSE
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Step (2) Global multi-kernel Pareto curving merging

Multi-kernel Optimization in ScaleHLS



● Dataflow designs are Pareto- 
dominating

● Dataflow cannot guarantee a 
good trade-off

● Dataflow design space is 
difficult to comprehend

● Automated tool outperforms 
exhaustive search

Dataflow = Coarse-grained Pipeline between Kernels

Multi-kernel Optimization is Important but Difficult



● PyTorch or C/C++ as input

● Optimized C++ dataflow design as 
output

● MLIR-based dataflow intermediate 
representation (IR), optimization, and 
code-generation

Framework Overview



High-level
Dataflow

Optimizations

Task fusion
Task splitting

… …

Low-level
Dataflow

Optimizations

Parallelization
Buffer optimization

Data movement
… …

Two-level dataflow representation

● Functional dataflow
○ Capture high-level dataflow 

characteristics
○ Efficient dataflow manipulation

● Structural dataflow
○ Capture low-level micro-architectures
○ Efficient scheduling and parallelization

Two-level Dataflow Representation



Neural Networks Results



StreamTensor: Streaming-based Multi-
kernel Dataflow
Working in progress… Stay tuned!
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Kernel Fusion (Traditional)
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Kernels always 
fusible by design
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● nodes
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C++

PyTorch

Torch-MLIR

Linalg Optimization

Linalg Tiling

Linalg to Dataflow

Dataflow Kernel Fusion

Dataflow Optimization

Dataflow FIFO Sizing

Bufferization

PL Codegen

HLS C++
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Binary
Model 

Parameters
v++ Link
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Connectivity
Config

XRT C++

Binary
Executable

Device

AIE Codegen

MLIR-AIE

LLVM-AIE v++ Compile

Linalg Tiling Space
● Tiling factors
● Unrolling factors
● Vectorization factors
● Permutation

Kernel Fusion Space
● Kernel fusion solution

FIFO Sizing Space
● Stream FIFO sizes

● Naive tiling
● Intensity-aware unrolling 

and vectorization
● Naive permutation

● Greedy kernel fusion

● Linear-programming based 
FIFO sizing

● End-to-end PyTorch-to-device flow
● Aggressive kernel fusion with streaming

○ Single kernel for a single  Mistral-7b or Llama-
8b decoder layer on U55C

● Automated data movement generation
○ DMA, packing, and widening for HBMs
○ Vectorization, layout conversion, and sizing for 

streaming FIFOs
● Pythonic user-level API 

○ Passes and design spaces; auto-tuning-ready

Kernel 
Library

(AIE/HLS)

Config Gen

default_tile_size
overall_unroll_factor

max_fusion_cost

dataflow_rewinding

Design Spaces Algorithms Hyper-parameters

Framework Overview



Mistral3-7B: From PyTorch to Board

Single Decoder Layer
Vocabulary size: 32000
Hidden size=4096
Intermediate size=14336
Number of hidden layers=32
Number of attention heads=32

AMD U55C FPGA
• All 48 kernels are fused into 

one single kernel
• All fused kernels are executed 

in a coarse-grained dataflow 
pipeline

Resource Utilization

BRAM (16kb RAM) 3176

DSP 928

FF 261667

LUT 358433

URAM (256kb RAM) 779
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