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e Background: Domain-Specific Accelerator (DSA)



The Golden Age of Architecture and Compiler

The Golden Age of Compilers

in an era of Hardware/Software co-design

David Patterson

UC Berkeley and Google )
Chris Lattner
May 16, 2019 SiFive Inc
Full Turing Lecture: April 19, 2021

https://www.acm.org/hennessy-patterson-turing-lecture

e A New Golden Age for Computer Architecture, David Patterson, 2019.
e The Golden Age of Compilers, Chris Lattner, 2021.



https://youtu.be/kFT54hO1X8M
https://youtu.be/4HgShra-KnY

Background of Domain-Specific Accelerator (DSA)

Exponentially increasing computing demands
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The End of Moore’s Law

End of the Line = 2X/20 years (3%/yr)
Amdahl’s Law = 2X/6 years (12%/year)
End of Dennard Scaling => Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)
100,000

3

~ 10,000

=

5_ 1,000

'

>

@

2 100

]

E

E

8

[ 10

o

1980 1985 1990 1995 2000 2005 2010 2015

Source: A New Golden Age for Computer Architecture, J. Hennessy
and D. Patterson



Opportunities and Challenges of DSA

What Opportunities Left? (Part Il)

= Only performance path left is Domain Specific
Architectures (DSASs)
- Just do a few tasks, but extremely well

= Achieve higher efficiency by tailoring the

Why DSAs Can Win (no magic)

Tailor the Architecture to the Domain

* More effective parallelism for a specific domain:
» SIMD vs. MIMD
* VLIW vs. Speculative, out-of-order

* More effective use of memory bandwidth
= User controlled versus caches

architecture to characteristics of the domain « Eliminate unneeded accuracy
H . . » |EEE replaced by lower precision FP
* Notone appllcatlon’ bUt a domaln Of * 32-64 bit integers to 8-16 bit integers
applications - Domain specific programming language provides path for
= Different from strict ASIC since still runs software
software
28| 29 |

Source: A New Golden Age for Computer Architecture, J. Hennessy and D. Patterson



Opportunities and Challenges of DSA (Cont’'d)

Hardware is getting harder

Modern compute acceleration platforms are multi-level and explicit:
e Scalar, SIMD/Vector, Multi-core, Multi-package, Multi-rack
e Non-coherent memory subsystems increase efficiency

Heterogeneous compute incorporating domain-specific accelerators
e Standard in high-end SoCs, domain-specific hard blocks in FPGAs

Many accelerator IPs are configurable:
e Optional extensions, tile / core count, memory hierarchy, etc

@ How can “normal people” write Software for this in the first place?
s ... and how can you afford to build generation-specific SW?

Source: The Golden Age of Compilers, C. Lattner.



Outline

e Software Compilation: How to program DSA?

o  MLIR: Multi-Level Intermediate Representation



How to program DSA? Take Al DSA as example

Programming Languages Compilers
Domain-specific languages (DSL) or 1. Using traditional compilers, such as LLVM, for
domain-specific programming frameworks optimization and code generation?

o LLVM is designed for CPU compilation and only

. supports low-level abstraction of programs.
O PyTorch

2. Developing chip-specific compilation framework?
o Instruction parallelization, multi-thread management,

1F Te nsorFIow memory management, heterogeneous back-ends,

code debugging, code generation, etc.

- We need a modular, extensible, and multi-level
f')/" PaddlePaddle compilation framework, which can be extended for the

representation, optimization, and code generation of
different domains. MLIR!



From LLVM to MLIR

M

COMPILER INFRASTRUCTURE

Fortran =&

Haskell -»

Clang C/C++/ObjC LLVM
Frontend X86 Backend
S — e
LLVM LLVM
livm-gce Frontend Optimizer PowerPC Backend
S — o —-
LLVM
GHC Frontend R LLvmIR| ARM Backend
= B

—» X86

- PowerPC

-» ARM

e LLVM uses the same intermediate representation (IR) to represent ALL programs.
e All program optimizations are based on the LLVM IR.
e LLVM dispatches the front-ends, optimizations, and back-ends. O(m*n) -> O(1)

Source: The architecture of open-source applications, C. Lattner.



From LLVM to MLIR (Cont’d)

C, C++, ObjC,
CUBA, OpencL. .. > Clang AST

Swift =

Rust =

Julia =>»

Fortran =>»

e More and more programming languages demand customized IR for optimization.
e The IR for different languages have different abstraction level.
e Language-specific IR can be lowered to LLVM for back-end code generation.

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.


https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

From LLVM to MLIR (Cont’d)
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) ) : Ax

Julia > JuliaAST > JulaIR |
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e Different back-ends demand customized IR for optimization
e DSAs even cannot use LLVM for generating back-end codes and demand their
own IR for code generation

Severe Fragmentation: IRs have different implementations and “frameworks”


https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

MLIR: Compiler Infrastructure for the End of Moore’s Law

Multi-Level Intermediate Representation

State of the art compiler technology

Built on top of LLVM’s open and library-based philosophy
Modular and extensible

Originally created within Google for compiling TensorFlow
Sufficiently general to compile lots of domains

https://mlir.llvm.org

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.


https://mlir.llvm.org

Syntax of MLIR

e SSA-based IR design, explicit typing system
e Module/Function/Region/Block/Operation hierarchy
e Operation can contain multiple Regions

func @testFunction(%arg@: i32) {
%x = call @thingToCall(%arg@) : (i32) -> i32
br *bb1
Abb1:
%y = addi %x, %x : 132
return %y : 132

}

A C++ namespace that contains customized
Dialect operations, types, and attributes. Implement
the “correct” abstraction for your domain.

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.

Module

Block

Operation

Operation

Block

Operation




MLIR: “Meta IR” and Compiler Infrastructure

C, C++, ObjC, - : .
CUDA, Open(J)L,...')[ Clang AST ]—> CIR Dialect |

Swift ->i Swift AST ]—-> SIL D|alect

Rust = RustAST ]—-> ﬁDialectl

Julia > Julia AST ]—-) Julia Dialect

N

Fortran—> Flang AST || EIR Dialect

~N

NVVM Dialect

MLIR

ROCm Dialect

MLIR is a “Meta IR” and [ °
compiler infrastructure for: °

; LLVM Dlalect
AVX Dialect }/

=
DSA-Specific
Dialect

J

Design and implement dialect

Optimization and transform inside of a dialect
Conversion between different dialects

Code generation of dialect


https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

MLIR-based Domain-Specific Compilation: Tensorflow

Payload Structure

e TF/HLO/MHLO: Tensor level dialects

| Extemal Dialect

representing the TF graphs
presenting the TF grap

Tensor

e Linalg: Linear algebra dialect

" wv e SCF (Structured Control Flow):
Loop level dialect explicitly

representing loop structures

e GPU: Dialect dedicated for
GPU-targeted optimizations

e NVVM/LLVM: Low-level dialect for
CPU/GPU code generation

Source: https://llvm.discourse.group/t/codegen-dialect-overview/2723



https://llvm.discourse.group/t/codegen-dialect-overview/2723

Join the MLIR/LLVM Community!

Website: https://mlir.llvm.org/

GitHub: https://qithub.com/llvm/llvm-project/tree/main/mlir
Forums: https://llvm.discourse.group/c/mlir/31

Discord: https://discord.ga/xS72362

Youtube: https://www.youtube.com/MLIRCompiler



https://mlir.llvm.org/
https://github.com/llvm/llvm-project/tree/main/mlir
https://llvm.discourse.group/c/mlir/31
https://discord.gg/xS7Z362
https://www.youtube.com/MLIRCompiler

Outline

e Hardware Compilation: How to design and verify DSA?
o CIRCT: Circuit IR Compilers and Tools



How to design and verify DSA?

Design Languages

1. High-level Synthesis? Suitable for designing
high-performance functional sub-modules.

2. \Verilog/VHDL is industry standard, but: Huge,
compilated, incompletely implemented; Is it an
IR? Or a programming language for humans? [1]

3. Meta HDL? Chisel/SpinalHDL, CAaSH/Bluespec,
and MyHDL/Migen generate Verilog from modern
languages, such as Scala, Haskell, Python, etc.

CHISEL L’) SpinalHDL

[1] The golden age of compilers, C. Lattner.

EDA Tools (Compilers)

The optimization, synthesis, place & route,
and verification can be implemented with
compilation techniques:

1.  Hardware circuit can be abstracted as
IR, such as FIRRTL

2.  Optimization can be implemented as
the transform of IR, while synthesis and
place & route as the lowering of IR

3. Verification can be implemented
through IR analysis and simulation

We need modular and extensible hardware
compilation framework to represent,
optimize, and simulate hardware circuits.



CIRCT: Compiler Infrastructure for the future of EDA

Circuit Intermediate Representation Compilers and Tools
Built using MLIR

LLVM incubator project

Composable toolchain for different aspects of
electronic design automation (EDA) process
Common platform with clean interfaces

e Tools for designing accelerators are relevant for
programming accelerators

https://circt.llvm.org

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.


https://circt.llvm.org

Parse Chisel Design into MLIR

module Foo:
clk: Clock
bus: {valid: UInt<1>, data: UInt<32>}

dataReg: UInt, clk

bus.valid:

dataReg <= bus.data fjr file from Chisel

Chisel %

1]

FIRRTL
Parser
FIRRTL

@ circt-translate -import-firrtl

[ ™ ] CIRCT Core
firrtl.module @Foo(in %clk: !firrtl.clock, in %bus: Dialects
'firrtl.bundle<valid: uint<1>, data: uint<32>>) {

%dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint

4 : 1\
%0 = firrtl.subfield %bus("valid") : SV QR
(!firrtl.bundle<valid: uint<1>, data: uint<32>>) -> Ifirrtl.uint<1> \ J -T-
firrtl.when %0 { Ver;Iog CIRCT
%1 = firrtl.subfield %bus("data") Exporter
('firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<32>

A

firrtl.connect %dataReg, %1 : !firrtl.uint, !firrtl.uint<32> Veril
. eriog
b} .mlir file




Circuit Transform in FIRRTL Dialect

firrtl.module @Foo(in %clk: !firrtl.clock, in %bus:
'firrtl.bundle<valid: uint<1>, data: uint<32>>) {
%dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint

%0 = firrtl.subfield %bus("valid")
('firrtl.bundle<valid: uint<1>, data: uint<32>>) -> Ifirrtl.uint<1>

firrtl.when %0 {
%1 = firrtl.subfield %bus("data")
('firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<32>

firrtl.connect %dataReg, %1 : !firrtl.uint, !firrtl.uint<32>

b .mlir file: High FIRRTL

@circt-opt -firrtl-lower-types -firrtl-infer-widths -firrtl-expand-whens
firrtl.module @Foo(in %clk: !'firrtl.clock, in %bus_valid: !firrtl.uint<1>,
in %bus_data: !firrtl.uint<32>) {

%dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint<32>

%0 = firrtl.mux(%bus_valid, %bus_data, %dataReg)

('firrtl.uint<1>, !firrtl.uint<32>, !firrtl.uint<32>) -> !firrtl.uint<32>

firrtl.connect %dataReg, %0 : !firrtl.uint<32>, !firrtl.uint<32>

.mlir file: Low FIRRTL

Chisel %

1]

FIRRTL
Parser
FIRRTL

CIRCT Core
HW ] Dialects
SV
Verilog
Exporter

A

Verilog %

CIRCT



Lower to CIRCT Core Dialects
@ circt-opt -lower-firrtl-to-hw

hw.module @Foo(%clk: , %bus_valid: , %bus_data: ) {
%dataReg = sv.reg : !'hw.inout< >
sv.ifdef "SYNTHESIS" {
} else {
sv.initial {
sv.verbatim " INIT_RANDOM_PROLOG_"
sv.ifdef.procedural "RANDOMIZE_REG_INIT" {
%RANDOM = sv.verbatim.expr " RANDOM" : () ->
sv.bpassign %dataReg, %RANDOM :

sv.read_inout %dataReg : !'hw.inout< >
comb.mux %bus_valid, %bus_data, %0 :
.alwaysff(posedge %clk) {
sv.passign %dataReg, %1

}
hw.output

.mlir file: HW+Comb+SV

[1] Chisel3: https://qithub.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

Chisel %

1]

FIRRTL
Parser
FIRRTL

)

oo )[ e |

CIRCT Core
[ HW ] Dialects
\ SV ) (' | R
-
Verilog CIRCT
Exporter

A

Verilog %


https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Export the IR as SystemVerilog

@ circt-translate -export-verilog

module Foo(
input clk, bus_valid,
input [31:0] bus_data);

[31:0] dataReg;

‘ifndef SYNTHESIS
initial begin
"INIT_RANDOM_PROLOG_
“ifdef RANDOMIZE_REG_INIT
dataReg = “RANDOM;
“endif
end
“endif

[31:0] _T = bus_valid ? bus_data :

always_ff @( clk)

dataReg <= _T;

endmodule

[1] Chisel3: https://qithub.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

dataReg;

.sv file

Chisel %

1]

FIRRTL
Parser
FIRRTL

A

Verilog %

CIRCT Core
HW ] Dialects
)
. J T
Verilog CIRCT
Exporter


https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Represent Circuits: Core Dialects

HW Dialect

e Abstract the structure of hardware circuits, such as
(Ext)Module/Instance, and types, such as InOut, Array,
Struct, Union, etc.

e Module port can support different types, such as
SystemVerilog Interface, in order to abstract hardware
circuits at different abstractions.

e Can combine with dialects apart from Comb and Seq.

e Convenient for IR analysis and transform.

Comb and Seq Dialect
e Represent combinational and sequential logics.

SV Dialect
e Represent declarations and structures in
SystemVerilog in order to print pretty .sv file.

[1] Chisel3: https://qithub.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

Chisel %

| [
FIRRTL
Parser

Y

FIRRTL

CIRCT Core
Dialects

Verilog
Exporter

A

Verilog %

s

CIRCT


https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: PyCDE

Python CIRCT Design Entry (PyCDE)
e Meta HDL based on Python language.
e Parse into MLIR through Python binding.
e Can reuse core dialects for circuit optimization.
e Canreuse the SV dialect and Verilog exporter for
pretty verilog generation.

CIRCT can boost the design and implementation of
hardware programming language

[1] Chisel3: https://qithub.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

Python %

Chisel %

gy

PyCDE

FIRRTL
Parser

Y

FIRRTL

oo )[ s |

CIRCT Core
Dialects

Y

SV

Y

Verilog
Exporter

A

Verilog %

s

CIRCT


https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: Simulation ™" 7 C“‘S;'/

A4 A

FIRRTL
FYCIPIE Parser
LLHD (Low Level Hardware Description) Dialect
e Dedicated for low-level circuit representation [ FRRTL |
e Support MLIR-based circuit simulation - g
@ ongoing [ Comb. ] [ Seq. ]
e Support behavioral, structural, and netlist level [ - ] CIRCT Core
simulation for multi-level circuit verification —~ Dialects
e Support massive parallelization in the simulation , !
LLHD SV QR
CIRCT can boost the evolution of hardware ! ! T
: : : . Verilog CIRCT
simulation techniques Simulator Exporter

A y

[1] Chisel3: https://github.com/chipsalliance/chisel3 VCD Tra(;?; Verilog ;
[2] Polygeist: https://github.com/wsmoses/Polygeist



https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: HLS

Handshake Dialect

e Processes communicate through stream interfaces.

e Interfaces connected by single-reader single-writer
FIFOs, which are logically unbounded.
e Processes can access interfaces in any order.

Provably deterministic if processes cannot test state

of streams: Elastic and Latency Insensitive

17—

CIRCT can boost High-level Synthesis research

Source: Handshake-based HLS in CIRCT, H. Ye.

[1] Chisel3: https://qithub.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

Python % Chisel % C/C++ %
A\ A\ 4 [1] Y [2]
FIRRTL [ MLIR Core |
il Parser Dialects
FIRRTL [« Handshake

-

[ ][ —

CIRCT Core
Dialects
LLHD SV Q R
I\ J T
: ; CIRCT
Simulator E\/erllog
xporter

A

A

VCD Trac?

Verilog %



https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Join the CIRCT Community!

Website: https://circt.llvm.org/

GitHub: https://qithub.com/Ilvm/circt/tree/main/

Forums: https://llvm.discourse.group/c/Projects-that-want-to-become-official-LLVM-Projects/circt/
Discord: https://discord.com/channels/636084430946959380/742572728787402763



https://circt.llvm.org/
https://github.com/llvm/circt/tree/main/
https://llvm.discourse.group/c/Projects-that-want-to-become-official-LLVM-Projects/circt/
https://discord.com/channels/636084430946959380/742572728787402763

Outline

e Conclusion: Software and Hardware Co-design



Spectrum of Compilers

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC
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Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.




Spectrum of Compilers (Cont'd)

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

—+ —— cadence —

MLIR

- — Aetherling —

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.



Spectrum of Compilers (Cont'd)

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

IR
o T

MLIR CIRCT

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.



Hardware and Software Co-design

Software

S

Designs Systems

(s

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.
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