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Challenges and Motivation

ScaleHLS - HPCA’22, LATTE’21

AutoScaleDSE - DAC’22, TRETS
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● Fast Compilation
● Thorough DSE
● Efficient U-Arch

ScaleHLS Optimization Results of ResNet-18
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Dataflow 
Optimization

Two-Level
Dataflow

● Functional Dataflow: High-level IR without hardware details for fast dataflow construction and task partition
● Structural Dataflow: Low-level IR with hardware details, such as the communication between dataflow 

nodes, for comprehensive dataflow scheduling, optimization, and design space exploration

Open-Source Contribution

ScaleHLS GitHub Repository

https://github.com/hanchenye/scalehls

35k Views and 2.9k Downloads since 2022

HLS (High-Level Synthesis) has a great potential to continue to drive the 
high-productivity designs of circuits with high-density, high-energy efficiency, 
and short design cycle. However, there still exhibits significant challenges on 
handling large-scale HLS design:

● Representation: Software-oriented intermediate representation (IR) is 
difficult to carry effective HLS optimizations

● Optimization: HLS optimizations highly relies on manual code rewriting, 
including directive, loop, and graph optimizations

● Exploration: Vast and complicated design space to explore

● Dataflow Pipeline
● Node Merging
● IP Integration

Graph Optimization

● Loop Tiling
● Loop Unroll and Jam
● Loop Perfectization

Loop Optimization

● Loop Pipeline
● Array Partition
● Primitive Integration

Directive Optimization

Marry HLS and MLIR

● Abstract HLS designs into multiple 
representation levels

● Solve the HLS optimization problems 
at “correct” abstraction levels

● Enable comprehensive design space 
exploration for optimal solutions
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Dialect Pass

@uflow.register_ip("gemv")

class Gemv(uflow.Ip):

    def __init__(self):

        super().__init__()

        self.data_type = uflow.Float()

        self.index_type = uflow.UInt(32)

        self.par_m = uflow.CompileParam(self.index_type, [2, 4, 8])

        self.dim_m = uflow.DynamicParam(self.index_type, (16, 1024))

        self.dim_n = uflow.DynamicParam(self.index_type, (16, 1024))

        self.mat_a = uflow.InputPort(uflow.DynamicTensor(

            self.data_type, [self.dim_m, self.dim_n],

            lambda m, n: [m / self.par_m, n, m % self.par_m]))

        self.vec_b = uflow.InputPort(

            uflow.DynamicTensor(self.data_type, [self.dim_n], lambda n: [n]), size=[1])

        self.vec_c = uflow.OutputPort(

            uflow.DynamicTensor(self.data_type, [self.dim_m],

            lambda m: [m / self.par_m, m % self.par_m]), size=[1])

    def semantics(self):

        for m in self.dim_m:

            for n in self.dim_n:

                self.vec_c[m] += self.mat_a[m, n] * self.vec_b[n]

Register a IP “gemv”

IP data types

IP compile-time params

IP runtime params

IP input port “mat_a”

Shape and layout of “mat_a”

IP output port “vec_c”

Size 1 indicates “vec_c” is FIFO

IP semantics for pattern match

Automated
IP Matching 

and Integration

An Example of GEMV IP Registration

Traditional quality-of-result estimation 

exhibits large inaccuracies

1. Random forest-based quality- 
of-result estimation

2. Evolutionary algorithm-based 
buffer partition

ML-augmented HLS Design 
Space Exploration
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