
UniLibrary (WIP)

ScaleFlow - TECHCON’23

ScaleHLS: A Scalable High-Level Synthesis Framework
Hanchen Ye, Deming Chen UIUC (University of Illinois at Urbana-Champaign)

Ph.D. Forum @ DAC

Challenges and Motivation

ScaleHLS - HPCA’22, LATTE’21

AutoScaleDSE - DAC’22, TRETS

First
Multi-Level HLS
Representation

Optimization
Exploration

● Fast Compilation
● Thorough DSE
● Efficient U-Arch

ScaleHLS Optimization Results of ResNet-18

Automated
Coarse-Grained

Dataflow
Optimization

Two-Level
Dataflow

● Functional Dataflow: High-level IR without hardware details for fast dataflow construction and task partition
● Structural Dataflow: Low-level IR with hardware details, such as the communication between dataflow

nodes, for comprehensive dataflow scheduling, optimization, and design space exploration

Open-Source Contribution

ScaleHLS GitHub Repository

https://github.com/hanchenye/scalehls

35k Views and 2.9k Downloads since 2022

HLS (High-Level Synthesis) has a great potential to continue to drive the
high-productivity designs of circuits with high-density, high-energy efficiency,
and short design cycle. However, there still exhibits significant challenges on
handling large-scale HLS design:

● Representation: Software-oriented intermediate representation (IR) is
difficult to carry effective HLS optimizations

● Optimization: HLS optimizations highly relies on manual code rewriting,
including directive, loop, and graph optimizations

● Exploration: Vast and complicated design space to explore

● Dataflow Pipeline
● Node Merging
● IP Integration

Graph Optimization

● Loop Tiling
● Loop Unroll and Jam
● Loop Perfectization

Loop Optimization

● Loop Pipeline
● Array Partition
● Primitive Integration

Directive Optimization

Marry HLS and MLIR

● Abstract HLS designs into multiple
representation levels

● Solve the HLS optimization problems
at “correct” abstraction levels

● Enable comprehensive design space
exploration for optimal solutions

Multi-Level
Intermediate

Representation

Large MLIR
Community:

… …

PyTorch LinAlg on
Tensor

LinAlg on
Buffer

UIP

UBufBufferize

Res., Perf.
Model

C/C++

Tile IP Rewrite

ScaleHLS
CodeGen

Auto-TuneIP Library

Dialect Pass

@uflow.register_ip("gemv")

class Gemv(uflow.Ip):

 def __init__(self):

 super().__init__()

 self.data_type = uflow.Float()

 self.index_type = uflow.UInt(32)

 self.par_m = uflow.CompileParam(self.index_type, [2, 4, 8])

 self.dim_m = uflow.DynamicParam(self.index_type, (16, 1024))

 self.dim_n = uflow.DynamicParam(self.index_type, (16, 1024))

 self.mat_a = uflow.InputPort(uflow.DynamicTensor(

 self.data_type, [self.dim_m, self.dim_n],

 lambda m, n: [m / self.par_m, n, m % self.par_m]))

 self.vec_b = uflow.InputPort(

 uflow.DynamicTensor(self.data_type, [self.dim_n], lambda n: [n]), size=[1])

 self.vec_c = uflow.OutputPort(

 uflow.DynamicTensor(self.data_type, [self.dim_m],

 lambda m: [m / self.par_m, m % self.par_m]), size=[1])

 def semantics(self):

 for m in self.dim_m:

 for n in self.dim_n:

 self.vec_c[m] += self.mat_a[m, n] * self.vec_b[n]

Register a IP “gemv”

IP data types

IP compile-time params

IP runtime params

IP input port “mat_a”

Shape and layout of “mat_a”

IP output port “vec_c”

Size 1 indicates “vec_c” is FIFO

IP semantics for pattern match

Automated
IP Matching

and Integration

An Example of GEMV IP Registration

Traditional quality-of-result estimation

exhibits large inaccuracies

1. Random forest-based quality-
of-result estimation

2. Evolutionary algorithm-based
buffer partition

ML-augmented HLS Design
Space Exploration

https://www.google.com/url?q=https://github.com/hanchenye/scalehls&sa=D&source=editors&ust=1688969709204245&usg=AOvVaw3Dd-tt4eNS4n_zyoOwBiOU

