
Invited: ScaleHLS: a Scalable High-Level Synthesis Framework
with Multi-level Transformations and Optimizations
Hanchen Ye1, HyeGang Jun1, Hyunmin Jeong1, Stephen Neuendorffer2, Deming Chen1

1University of Illinois at Urbana-Champaign, 2Advanced Micro Devices Inc.
{hanchen8, hgjun2, hyunmin2, dchen}@illinois.edu, stephenn@amd.com

ABSTRACT
This paper presents an enhanced version of a scalable HLS (High-
Level Synthesis) framework named ScaleHLS, which can com-
pile HLS C/C++ programs and PyTorch models to highly-efficient
and synthesizable C++ designs. The original version of ScaleHLS
achieved significant speedup on both C/C++ kernels and PyTorch
models [14]. In this paper, we first highlight the key features of
ScaleHLS on tackling the challenges present in the representation,
optimization, and exploration of large-scale HLS designs. To further
improve the scalability of ScaleHLS, we then propose an enhanced
HLS transform and analysis library supported in both C++ and
Python, and a new design space exploration algorithm to handle
HLS designs with hierarchical structures more effectively. Compar-
ing to the original ScaleHLS, our enhanced version improves the
speedup by up to 60.9× on FPGAs. ScaleHLS is fully open-sourced
at https://github.com/hanchenye/scalehls.

1 INTRODUCTION
With the end of Moore’s law, general-purpose computing plat-
forms are facing significant challenges on meeting the performance
and power efficiency demands of emerging applications simulta-
neously. DSA (Domain-Specific Accelerator) has been attracting
wide attention from both industry and academia [6, 16]. However,
as today’s DSA can contain billions of transistors and cost hun-
dreds of engineer-years on the design and verification of the SoC
(System-on-Chip) circuit [7], the development of DSA is consid-
erably challenging to match the rapid evolvement of the targeted
domain. To bridge the gap, existing literature has explored new
techniques on multiple fronts, including compilation tools [2, 9],
programming languages [4, 11], and agile development method-
ologies [1, 7]. Among these efforts, HLS (High-Level Synthesis)
is widely adopted and becomes a promising technique due to its
unique advantages on productivity and rapid DSE (Design Space
Exploration). However, current HLS tools are still limited to small
functional modules without complicated computation and memory
hierarchy. To improve the scalability of HLS solutions, we proposed
ScaleHLS [14], which supports a hierarchical and multi-level IR
(Intermediate Representation) of HLS designs. On top of the hierar-
chical IR, different HLS optimization and management problems
can be abstracted to the suitable level and solved in a scalable man-
ner. To further advance the ScaleHLS framework, we propose two
unique technical improvements in this paper as follows.

• Transform and Analysis Library. We propose an enhanced library
to improve the modularity and productivity of HLS optimizations.
A set of commonly used classes and methods for HLS transform
and analysis are designed and packaged, which support rapid
integration in both C++ and Python.
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Figure 1: ScaleHLS Framework

• Design Space Exploration.We propose a new DSE algorithm based
on dynamic programming and evolutionary algorithm that can
handle hierarchical HLS designs with higher scalability.
In the remainder of this paper, we first introduce the key features

of ScaleHLS and the new improvements in Section 2. Then, we
provide the evaluation results in Section 3. Finally, we conclude the
paper and propose some directions of future works in Section 4.

2 SCALEHLS FRAMEWORK
2.1 Framework Overview
The goal of ScaleHLS is to leverage the multi-level hierarchy of
HLS designs and advanced compilation techniques to address the
automation and scalability issues of existing HLS flows. Figure 1
shows the overall architecture of ScaleHLS framework. ScaleHLS is
built upon MLIR [9] and supports C/C++ and PyTorch programs as
inputs through the Polygeist [10] and Torch-MLIR [3] front-ends, re-
spectively. Once the input programs are parsed intoMLIR, ScaleHLS
supports three levels of representation to apply the HLS-oriented
optimizations progressively. At the highest level, ScaleHLS uses
tosa (Tensor Operator Set Architecture), linalg (Linear Algebra),
and tensor dialects [9] to represent the tensor-level computation
graph, where graph optimizations, such as node fusion and coarse-
grained pipelining, can be performed efficiently. At the middle level,
ScaleHLS uses affine, vector, and memref (Memory Reference)
dialects [9] to explicitly represent the loop structures in an affine
format in order to perform the affine loop analyses and optimiza-
tions. Finally, at the lowest level, we introduce an hlscpp dialect to
represent the HLS-specific directives (such as loop pipelining) and
primitives (such as multiplication primitive) to fine-tune the hard-
ware micro-architecture and enable an efficient code generation.

On top of each level of IR, ScaleHLS provides a set of transform
passes to optimize HLS designs. By performing each transform pass

https://github.com/hanchenye/scalehls


Table 1: ScaleHLS Transform and Analysis Library

Type Name Description

Class
ScaleHLSEstimator QoR estimator class
ScaleHLSExplorer Design space explorer class
ScaleHLSEmitter HLS C++ emitter class

Graph
Opts.

TosaSimplifyGraph Remove redundant TOSA ops
TosaNodeFusion Heuristic TOSA op fusion
LegalizeDataflow Legalize multi-consumer ops and

bypass paths in TOSA dataflow

Loop
Opts.

AffineLoopPerfection Perfectize loop bands
RemoveVariableBound Remove variable loop bounds
AffineLoopTile Tile perfect loop bands
AffineLoopOrderOpt Permute loops to increase distances

of loop-carried dependencies
AffineLoopUnrollJam Unroll and jam perfect loop bands
SimplifyAffineIf Remove redundant if statements

Mem.
Opts.

AffineStoreForward Replace redundant memory loads
with forwarded scalars

SimplifyMemrefAccess Remove redundant loads/stores
ReduceInitialInterval Reduce loop pipeline II

Direct.
Opts.

FuncPipelining Apply function pipelining
LoopPipelining Apply loop pipelining
CreateHLSPrimitive Generated HLS-specific primitives
ArrayPartition Automatic array partition

at the "correct" level of abstraction, ScaleHLS is able to leverage
the intrinsic hierarchy of HLS designs and reduce the algorith-
mic complexity of transforms. Meanwhile, a static schedule-based
QoR (Quality of Results) estimator is designed to predict the re-
source utilization and performance through IR analysis. The QoR
estimator can rapidly evaluate the benefits of different transform
passes to avoid immature combination of optimizations and guide
the configuration of tunable parameters. Furthermore, to leverage
the reusability advantages of the library-driven design philosophy,
we parameterize and encapsulate the APIs under the hood of the
aforementioned transform passes and QoR estimator into an HLS-
dedicated transform and analysis library available in both C++ and
Python. The Python APIs are packaged into a scalehls module
and can be layered on the MLIR built-in mlir module to traverse
and transform HLS designs using Python. The unique techniques
included in this library are elaborated in Section 2.2.

Using the transform and analysis library, we propose a DSE en-
gine to automatically tune the optimization parameters exposed
by the transform APIs. To efficiently iterate in the large design
space coming with large-scale HLS designs, the DSE engine inte-
grates the QoR estimator to evaluate the discovered design points.
The algorithmic details of the proposed DSE are introduced in Sec-
tion 2.3. Finally, the optimized IR is emitted as synthesizable HLS
C/C++ code, which can be passed to downstream RTL-generation
tools, such as Xilinx Vitis HLS [5]. Meanwhile, integration with
the CIRCT [2] framework to directly generate RTL from MLIR is
currently under development.

2.2 ScaleHLS Transform and Analysis Library
Based on the broad recognition of the “as a library” philosophy
of LLVM [8], we envision that an HLS-dedicated optimization li-
brary will effectively improve the modularity and reusability of HLS
compilation flows. Hence, we propose an enhanced transform and

1 import scalehls
2 import mlir.ir
3 import mlir.dialects import func
4
5 # Parse C/C++ into MLIR.
6 ... ...
7 mod = mlir.ir.Module.parse(fin, ...)
8
9 # Traverse all functions in MLIR.
10 for f in mod.body:
11 if not isinstance(f, func.FuncOp): pass
12 f.__class__ = func.FuncOp
13
14 # Transform loop bands and arrays in the function.
15 for band in scalehls.LoopBandList(f):
16 scalehls.loop_perfection(band)
17 factors = np.full(band.depth, 4)
18 scalehls.loop_tiling(band, factors)
19
20 for array in scalehls.ArrayList(f):
21 type = array.type
22 type.__class__ = mlir.ir.MemRefType
23 factors = np.full(type.rank, 4)
24 scalehls.array_partition(array, factors, "cyclic")
25
26 # Emit transformed MLIR to HLS C++.
27 buf = io.StringIO()
28 scalehls.emit_hlscpp(mod, buf)

Listing 1: Using scalehls Python Library

analysis library in ScaleHLS, which provides a set of unique classes
and methods for the evaluation and optimization of HLS designs
as well as the code generation. Table 1 lists the current supported
classes and methods in the library. The three classes, Estimator,
Explorer, and Emitter, are designed to construct and solve the
QoR estimation, DSE, and HLS C++ emission problems, respectively.
As we mentioned in Section 2.1, the Estimator is integrated into
the Explorer as an object in order to rapidly evaluate the discov-
ered design points. As the DSE problem is often better solved by
partitioning into a number of small problems, the Estimator is
designed in a hierarchical way such that different pieces of the
HLS designs can be estimated separately to avoid estimating the
entire design in every iteration. Similarly, the Emitter is also de-
signed hierarchically, which enables the compiler to interact with
downstream RTL-generation tools in a more fine-grained manner.

All the optimization methods are categorized into four groups,
Graph, Loop, Memory, and Directive. 1) Graph optimizations are
focused on the tosa dialect, such as TOSA graph simplification and
TOSA operation fusion. 2) Loop optimizations are built using the
libraries of the affine dialect. We introduce loop perfection and
variable bound loop removal methods to regularize loop structures
and pave the path for subsequent optimizations. Then, loop tiling
and unrolling are supported to improve the data locality and compu-
tation parallelisms, respectively. 3) Considering memory bandwidth
is one of the most scarce resources in hardware accelerators, we
introduce multiple memory optimizations to improve the efficiency
of memory access. 4) Finally, directive optimizations, including loop
and function pipelining and array partition, are built on top of the
abstractions of our hlscpp dialect.

2.2.1 Python Binding. As ScaleHLS is implemented in C++, all the
classes and methods described above are also exposed as C++ APIs.
While C++ allows library users to get lower-level control of the
optimizations, HLS designers or researchers may prefer a more
user-friendly and productive language, such as Python, to access
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Figure 2: Example of Pipeline Optimizations

the library. Additionally, recent literature [13, 15] has shown great
interests in leveraging machine learning or graph algorithms to ad-
vance HLS optimizations. To take advantage of the existing Python
libraries supporting these algorithms and enable the seamless in-
tegration with ScaleHLS, we design a scalehls Python module
by wrapping and binding the C/C++ APIs to Python. Listing 1
shows an example of using the scalehls library in Python. In
line 1-3, the scalehls module is imported together with the mlir
modules, which exposes the IR and built-in dialect APIs, including
operation, type, value, and a func dialect. In line 5-12, we parse
the input C/C++ code into an MLIR module instance called mod
through the Polygeist front-end and start to traverse the contained
functions. To help with the function transformation, we provide
two handy Python classes (shown in line 15 and 20), LoopBandList
and ArrayList, that can be initialized with a function instance and
iterate on all loop bands and arrays inside of the function. Then,
in line 15-18, we perform loop perfection and tiling for each loop
band. Notably, the loop_tiling API is deeply integrated with the
numpy library at C/C++ level such that a numpy array can be directly
used as tiling factors. This feature allows the ScaleHLS transform
APIs to directly interact with the algorithm-side frameworks in
Python. Similarly, in line 20-24, each array in the function is cycli-
cally partitioned with a factor of 4 on each dimension. Finally, in
line 26-28, the transformed MLIR is exported to an output buffer as
synthesizable HLS C++ by calling the emit_hlscpp method.

2.2.2 Pipeline Optimizations. Loop pipelining is an essential HLS
optimization to improve throughput by enabling fine-grained spa-
tial parallelism. However, existing HLS tools typically demand de-
signers to manually implement different pipeline design choices
to achieve a satisfactory design quality. In the ScaleHLS library
shown in Table 1, two main passes are introduced to automatically
optimize the performance of pipeline, AffineLoopOrderOpt and
ReduceInitialInterval. Figure 2 shows the dataflow of an ex-
ample before and after the pipeline optimizations. This example
contains two nested loops, loop-i and loop-j, while the loop body
is pipelined into 6 stages, S0 to S5. We can observe the memory
load and store of C[i] has an anti-dependence carried by loop-j.
The minimum 𝐼 𝐼 (Initiation Interval) constrained by loop-carried
dependencies [17] can be calculated as:
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Figure 3: Example of Pareto Frontier Merging
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where 𝑝 denotes each pair of dependence existed in the loop nest. To
minimize the 𝐼 𝐼 , AffineLoopOrderOptwill permute the loops asso-
ciated with dependencies to outermost to maximize the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝
in the loop iteration space, while ReduceInitialInterval will
manipulate the order of operations in the loop body to minimize
the𝐷𝑒𝑙𝑎𝑦𝑝 between dependent operations. As shown in Figure 2(b),
loop-j is permuted to the outermost loop level. Meanwhile, as the
memory load of C[i] dominates the store through a chain of com-
mutative operators, the load can be moved around different entries
of the chain without changing the functionality. Note that as the
adder result in S3 is consumed by a store of A[i] apart from the
subsequent adder, the load of C[i] can only be moved to S2 instead
of S3 as the final optimization result shown in Figure 2(b).

2.3 Design Space Exploration
The tunable parameters exposed by the transform APIs of ScaleHLS
library can lead to a large and multi-dimensional design space. In
addition, existing literature [15] has shown that different HLS op-
timization techniques, such as loop unrolling and array partition,
may have correlation or conflict with each other, making the design
space more complicated to explore. To tackle this challenge, [14] has
proposed a neighbor-traversing algorithm to search for the Pareto
dominant design points of the latency-area space. When scaling up
to multiple loop bands with hierarchical structure, we propose a DP
(Dynamic Programming) algorithm in this paper to avoid the ex-
plosion of complexity: we first break down the global optimization
problem into a number of sub-problems and then merge the Pareto
design points of each sub-problem to deliver the final result. The
left side of Figure 3 shows a tree of loop bands, where Band1 and
Band4 are contained by Band0, and Band2-3 are contained by Band1.
We define the optimization of each "leaf" loop band (Band2-4) as a
sub-problem and employ the DSE algorithm in [14] to find the local
Pareto frontier. Then, we hierarchically merge the Pareto frontiers
until all sub-problems are merged. In the case of Figure 3, Band2
and Band3 are merged in the first iteration, and the intermediate
result is then merged with Band4 in the second iteration, which
produces the final Pareto frontier of the entire design.

However, our experiments showed that for cases when there are
numerous sub-problems, indeed, due to the correlation between
the sub-problems, our initial DP approach produced a sub-optimal
design. The main complexity lies in the array partition scheme,
as the arrays represent the on-chip buffers, naturally are shared
between sub-problems. As a result, an analytical method for find-
ing the optimal array partition scheme by inspection of the code
alone is challenging. This problem is further exasperated when the
array sizes are not regular, not having a common array size and



Table 2: Evaluation Results Compared to ScaleHLS [14]

Latency Speedup DSP FF LUT

2mm
Baseline 26𝑚𝑠 1x 2% 1% 2%
ScaleHLS 784 𝜇s 33x 78% 45% 65%

Ours (DP+EA) 143 𝜇s 182x 58% 42% 78%

3mm
Baseline 404𝑚𝑠 1x 2% 1% 3%
ScaleHLS 1,755 𝜇s 230x 27% 22% 67%

Ours (DP+EA) 414 𝜇s 976x 41% 54% 87%

atax
Baseline 2,738 𝜇s 1x 2% 0% 1%
ScaleHLS 670 𝜇s 4.1x 4% 1% 3%

Ours (DP+EA) 11 𝜇s 249x 82% 58% 78%

doitgen
Baseline 50𝑚𝑠 1x 2% 0% 2%
ScaleHLS 1,997 𝜇s 26x 9% 10% 18%

Ours (DP+EA) 151 𝜇s 331x 62% 97% 90%

spam-
filter

Baseline 7,842𝑚𝑠 1x 5% 2% 7%
ScaleHLS 112𝑚s 70x 76% 22% 57%

Ours (DP+EA) 112𝑚s 70x 76% 22% 57%

dimension. A solution to this problem is inspired by Chimera [15],
which presents a method that, through the use of EA (Evolutionary
Algorithm), can subsequently evolve specific parameters that the
authors of the paper call tune-able knobs. However, this method
still relies on the user to manually specify the knobs to optimize.
Building upon Chimera, we design an automated algorithm that
identifies the critical knobs. This method identifies certain arrays
that are shared between sub-problems and weights them according
to the criticality to the overall design. Using the weight information,
the array partition scheme is evolved for the selected knobs, where
higher weighted knobs are explored to a greater extent.

3 EVALUATION
In this section, we evaluate the proposed framework using bench-
marks from PolyBench [12] and Rosetta benchmark suite [18],
which are beyond the benchmarks used in original ScaleHLS [14].
All the results are collected with Xilinx Vivado HLS 2019.1 tar-
geting Xilinx XC7Z020 FPGA, an edge FPGA with 220 DSPs and
53,200 LUTs. Table 2 shows the evaluation results compared to
ScaleHLS [14] and a baseline, where the Baseline rows show the
results of original designs directly going through Vivado HLS with-
out any optimizations. We can observe the enhanced framework
proposed in this paper performs the best due to the new pipeline
optimizations and DSE algorithm. The performance gains reported
for 2mm and 3mm is mainly attributed to EA being able to find
array partition schemes suitable for correlated sub-problems. At
the same time, the huge performance gains reported for atax and
doitgen, although benefiting from the optimized array partition
scheme, is mainly due to EA being able to explore loops further.
Due to how the DP approach breaks the global design space into
smaller sub-problems, resource allocation for each sub-problemwill
be either greedy or based on some heuristics. We complement the
DP approach with the globally scoped EA exploring the resource
allocation between sub-problems, and this approach is most bene-
ficial for the atax and doitgen benchmarks. As for the spam-filter
Rosetta benchmark, we are not able to further optimize the bench-
mark due to sub-problems having the same loop trip count. As a
result, when we search for a more optimized design, we could only
match the design initially produced by ScaleHLS.

4 CONCLUSION AND FUTUREWORKS
In this paper, we introduce a ScaleHLS framework with multi-levels
of IR and scalable support on the optimization of HLS designs. We
propose an HLS-dedicated transform and analysis library in both
C++ and Python that improves the modularity of the framework.
A hierarchical DSE algorithm is proposed, which achieves promis-
ing speedup on a set of benchmarks from PolyBench and Rosetta.
Several directions are left as future works: 1) Memory manage-
ment. The on-chip and off-chip memory resources are supposed to
be carefully managed in order to achieve the best computing effi-
ciency. 2) Hierarchical dataflow. Dataflow optimization is essential
for multi-kernel HLS designs to enable the spatial parallelism and
improve the throughput. 3) RTL generation. We are working on
the integration of ScaleHLS and CIRCT [2] aiming to directly gen-
erate optimized RTL designs from MLIR. 4) IP integration. We can
leverage existing highly-optimized IPs to reduce the size of design
spaces to explore and improve the quality of generated designs.
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