
PolyAIE: A Dataflow Compiler for Heterogeneous 

Compute Platforms
Hanchen Ye (hanchenye.com), Advisor: Prof. Deming Chen, Affiliation: UIUC ECE

DAC Young Fellows

Sponsored by:

AMD-Xilinx Versal ACAP Architecture

Scalar Engine: Dual-Core ARM CPU

Adaptable Engine: FPGA

Intelligent Engine: AI-Engine Array

Three compute engines and hard IPs, 

including PCIe and DDR controllers, 

can communicate with each other 

through a Network-on-Chip (NoC).

Each AIE has:

• A 32KB local buffer

• A VLIW core that can process 128 

INT8 MACs per clock cycle at 1GHz

Communication between AIEs:

Adjacent AIEs: Local buffer sharing

Non-adjacent AIEs: An AXI-S network 

with configurable AXI-S switches

AI-Engine (AIE) Array Architecture [1]

Phase 1

o Workload decompose

o Polyhedral-based loop and 

memory access optimization

32KB Local Memory

AXI-S Switch Box

AXI-MM Channel

AXI-S Channel

MLIR-based Compilation Flow for 

Heterogeneous Architectures

Original

Compute 

Kernel

Tile 2Tile 0

Tile 3Tile 1

MLIR [2] Dialects

Workload 

Decompose

Proc 0

Proc 2

Proc 3

Proc 1

Proc 0

Proc 2

IO 0

Proc 1

Proc 3
Our Dataflow Dialect

Graph 

Partition

C/C++

Kernel

Parse into 

MLIR

Our Runtime Dialect: Manage CPU-AIE-FPGA interfacing and host environment interaction.

Lower Lower

Kernel 

Binary

AIE 

Binaries

FPGA

Bitstream

Code

Gen

VLIW Processor

AIE 

[2,0]

AIE 

[1,1]

AIE 

[1,0]

NoC IO

[0, 1]

HLS

Kernel

NoC IO

[0, 0]

AIE 

[2,1]

AIE Array

FPGA

MLIR-AIE [3] and 

ScaleHLS [4] Dialect

HLS Kernel

[1] Samuel Bayliss. “Compiling for Xilinx AI Engine using 

MLIR.” C4ML Workshop, 2020.

[2] Chris Lattner, et al. “Mlir: Scaling compiler infrastructure for 

domain specific computation.” CGO, 2021. https://mlir.llvm.org/

[3] Stephen Neuendorffer, et al. “The Evolution of Domain-

Specific Computing for Deep Learning.” MCAS, 2021. 

https://xilinx.github.io/mlir-aie/

[4] Hanchen Ye, et al. “ScaleHLS: A New Scalable High-Level 

Synthesis Framework on Multi-Level Intermediate 

Representation.” HPCA, 2022. 

https://github.com/hanchenye/scalehls

Phase 2

o Dependency extraction

o Dataflow graph generation

o Runtime generation

Phase 3

o Dataflow graph partition

o Interface node insertion

o Placement

Phase 4

o Dataflow to AIE conversion

o Dataflow to HLS conversion

o Intra-node optimizations

Phase 5

o Buffer and lock allocation

o DMA descriptor generation

o Routing (using MLIR-AIE)

Initial Experimental Results GEMM Kernel Efficiency GEMM Kernel Compilation Time

Special thanks to Stephen Neuendorffer, Kristof Denolf, Jack Lo, and Samuel Bayliss from AMD-Xilinx and Prof. Peipei Zhou and Jinming Zhuang form University of Pittsburgh!

How to program it?

• There’s a huge gap between the 

heterogeneous hardware and 

applications, e.g., NN models.

• How to model the hardware at a 

high level and distribute the 

workloads efficiently?

• How to manage the computing, 

memory, and I/O resources of 

different hardware components?

The binaries of GEMM kernels generated by PolyAIE are offloaded to an 

AMD-Xilinx Versal VCK190 board for evaluation.

• Single AIE efficiency: A 32x32x32 GEMM kernel is mapped to one AIE 

and achieves 83.7% efficiency compared with the maximum possible 

performance of one AIE under 1GHz.

• Multiple AIE efficiency: A 128x128x128 GEMM achieves an efficiency 

of 75.2% on 64 AIEs. The efficiency drop mainly comes from the cost of 

data movement and synchronization between AIEs.

• Compilation time: The proposed dataflow layer models the hardware 

at a proper granularity, which supports efficient transforms, such as 

placement, while avoiding the complexity brought by redundant 

hardware details. Meanwhile, the intra-node optimizations can be 

applied in parallel. Overall, the compilation time increases linearly as 

the number of AIEs increases.

https://hanchenye.com/
https://mlir.llvm.org/
https://xilinx.github.io/mlir-aie/
https://github.com/hanchenye/scalehls

