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Motivation - Goal

MLIR-based ScaleFlow Framework
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Motivation - Challenges ResNet-18 Compilation Walkthrough

) : . . p
The gap between serial and dataflow programming model is huge / s Dispatch0 5 Schedule0 e
’ Y of o : Hp / - / ode onv.
o |t’s difficult for designers to construct legal and efficient K Task0 e (= Noden ;
dataflow structure manually K g = N Add Design Space Add U BTl
. . ) ' ~ 7 N ~ /
= The design space of dataflow is huge ] pu—— /\ Exploration - N/
o It’s difficult for designers to reason the optimal on-chip buffer weght o822 | Task1 Task1 Nodet1 Stream
g P P Conv External Memory Conv.
sizes, parallelization factors, streaming strategies, etc. é ________ Node2 Conv
l L al Stream '
| —_—
: I--------I o123 |4]|.
100.00% Task?2| Task2 N Node2 5/6(7/8|9].
wei {(64x64x3x3)
= \ | [ Conv. Soft FIFO CO*”V' Nl
S 75.00% ! S g— v )
© 1 l |
= \ add_ ‘
2 0 \ Task3 Task3 4 N cf3/
o 50.00% \ as /| Task6 Conv. L 'l Node6 Conv.
5 \ ::> Add / ::> Add !
£ 2500% : | \ 2 /\ ! [[| Dispatcht 2 —— " || Schedulel
O 2.25% 0.00% 0.00% 1.12% ‘ _convolution o , o A
\
& 0.00% \‘ weight (128x64x3x3) Taskd E Task4 ’I '|I'_askc? E No £4/.\l Il '||'_askc?
(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1] \‘ | k< Conv. : 0a 5 Conv. . - o*a
: 2 'I 3 'I | |
Fig. 2: Students are requested to accelerate LeNet on PYNQ-Z2 using HLS. \\ § l | / l s ls" cal l ] v
. 5 .. Cy . , , I '
The figure shows the percentage of students’ submissions (Y axis) in each \ © Task5 Task6 'Crg:“ = Node5 Node6 gg:“
. . . | i X x3x wei x64x1x g g
performance range (X axis). The performances are normalized with respect R St o il Conv. Conv. | D CO*nV- CO*nV- | : >
to expert design’s performance with dataflow (4994 FPS). \ Tasks ae " Tasks v \\ l | | | '\\ | v |
| add_ | \A/ |
\‘ Task7 Task7 \ Task2 Node7 b Task2
! relu \ Store Add \ Store
1 » - ~ Add \ \
\ | 7 \ Y |

ScaleHLS, the previous version of ScaleFlow, is published at HPCA’22 and
DAC’22 and open-sourced on GitHub:
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ResNet-18 Sub-graph of ResNet-18 Logical Dataflow Physical Dataflow

= At physical dataflow level, shared-buffers and stream channels
are created and optimized. The parallelization factors of all nodes
are balanced according to their computational complexity.

= Start from the computation graph compiled from PyTorch model

= At logical dataflow level, the hierarchical dataflow structure is
created from the original computation graph

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls
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