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MLIR-based ScaleFlow Framework

Motivation - Challenges

▪ Automatically generate efficient task-level pipeline (dataflow) in 
large-scale HLS designs

Fig. 1: Throughput of LeNet on PYNQ-Z2 FPGA

▪ The gap between serial and dataflow programming model is huge

○ It’s difficult for designers to construct legal and efficient 
dataflow structure manually

▪ The design space of dataflow is huge

○ It’s difficult for designers to reason the optimal on-chip buffer 
sizes, parallelization factors, streaming strategies, etc.

Utilization (%) LUT BRAM DSP

Non-dataflow 65.40% 98.93% 100.00%

Dataflow 67.90% 98.93% 100.00%

Table. 1: Resource Utilization of LeNet on PYNQ-Z2 FPGA
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a Create Dataflow from TOSA

b Lower TOSA to LinAlg*

c Bufferize LinAlg* and Dataflow

d Lower LinAlg to Affine*

e Optimize Affine loops

f Create Dataflow from Affine

g Create buffer and stream

h Lower to physical Dataflow

i Schedule and optimize Dataflow

j Optimize buffer and stream

k Create primitive and interface

m Lower Dataflow to Func

n HLS directive optimization

Our Tools Our Dialects Existing Tools Existing Dialects Lowering Passes Transform Passes

▪ Built on top of the MLIR compiler 
infrastructure [1]

▪ Take PyTorch model or HLS C++ as 
inputs and generate optimized 
dataflow designs in HLS C++

▪ Logical dataflow:

○ High-level dataflow representation

○ Used for dataflow structure 
generation and task dispatch

▪ Physical dataflow:

○ Explicit shared-buffer and stream 
channel representation

○ Used for dataflow scheduling and 
optimization
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Design Space 
Exploration

▪ Start from the computation graph compiled from PyTorch model

▪ At logical dataflow level, the hierarchical dataflow structure is 
created from the original computation graph

▪ At physical dataflow level, shared-buffers and stream channels 
are created and optimized. The parallelization factors of all nodes 
are balanced according to their computational complexity.

ScaleHLS, the previous version of ScaleFlow, is published at HPCA’22 and 
DAC’22 and open-sourced on GitHub:

Fig. 2: Students are requested to accelerate LeNet on PYNQ-Z2 using HLS. 
The figure shows the percentage of students’ submissions (Y axis) in each 
performance range (X axis). The performances are normalized with respect 
to expert design’s performance with dataflow (4994 FPS).

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

