
Motivation - Goal

ScaleFlow: Scalable High-Level Synthesis for Large Dataflow Applications
Hanchen Ye, Hyegang Jun, and Deming Chen University of Illinois at Urbana-Champaign

MLIR-based ScaleFlow Framework

Motivation - Challenges

▪ Automatically generate efficient task-level pipeline (dataflow) in 
large-scale HLS designs

Fig. 1: Throughput of LeNet on PYNQ-Z2 FPGA

▪ The gap between serial and dataflow programming model is huge

○ It’s difficult for designers to construct legal and efficient 
dataflow structure manually

▪ The design space of dataflow is huge

○ It’s difficult for designers to reason the optimal on-chip buffer 
sizes, parallelization factors, streaming strategies, etc.

Utilization (%) LUT BRAM DSP

Non-dataflow 65.40% 98.93% 100.00%

Dataflow 67.90% 98.93% 100.00%

Table. 1: Resource Utilization of LeNet on PYNQ-Z2 FPGA

3.15x

DSE

HLS C++
Emitter

Polygeist

Torch-
MLIR

Structure Control Payload Data

Logical 
Dataflow

Physical 
Dataflow

Func

TOSA

LinAlg

Affine

Affine + 
Directive

Arith

Arith + 
Primitive

Tensor

MemRef

Buffer + 
Stream

PyTorch

HLS C++

Optimized
HLS C++

Design 
Constraints

f

i

n

e

a

j

b

c

d

gh

m k

a Create Dataflow from TOSA

b Lower TOSA to LinAlg*

c Bufferize LinAlg* and Dataflow

d Lower LinAlg to Affine*

e Optimize Affine loops

f Create Dataflow from Affine

g Create buffer and stream

h Lower to physical Dataflow

i Schedule and optimize Dataflow

j Optimize buffer and stream

k Create primitive and interface

m Lower Dataflow to Func

n HLS directive optimization

Our Tools Our Dialects Existing Tools Existing Dialects Lowering Passes Transform Passes

▪ Built on top of the MLIR compiler 
infrastructure [1]

▪ Take PyTorch model or HLS C++ as 
inputs and generate optimized 
dataflow designs in HLS C++

▪ Logical dataflow:

○ High-level dataflow representation

○ Used for dataflow structure 
generation and task dispatch

▪ Physical dataflow:

○ Explicit shared-buffer and stream 
channel representation

○ Used for dataflow scheduling and 
optimization

ResNet-18 Compilation Walkthrough

ResNet-18

Task0

Task1

Task2

Task3

Task4

Task6Task5

Task7

Task0
Add

.

Task3
Add

Task4
Conv.

Task5
Conv.

Task6
Conv.

Task7
Add

Dispatch0

Logical DataflowSub-graph of ResNet-18

Cr
ea

te
 D

at
afl

ow

Task6 Conv.

Task0 
Load

Task1 
Comp.

Task2
Store

Dispatch1

Task1
Conv.

Task2
Conv.

Node0
Add

.

Node3
Add

Node4
Conv.

Node5
Conv.

Node6
Conv.

Node7
Add

Schedule0

Node1
Conv.

Node2
Conv.

Physical Dataflow

Node6 Conv.

Task0 
Load

Task1 
Comp.

Task2
Store

Schedule1

Lo
w

er
 D

at
afl

ow

External Memory

Stream

Stream

Token
Stream

Soft FIFO

AXI

Stream

Node1 Conv.

Node2 Conv.

0 1 2 3 4 …

5 6 7 8 9 …

… … … … … …

0 1 2 3 4 …

5 6 7 8 9 …

… … … … … …

Design Space 
Exploration

▪ Start from the computation graph compiled from PyTorch model

▪ At logical dataflow level, the hierarchical dataflow structure is 
created from the original computation graph

▪ At physical dataflow level, shared-buffers and stream channels 
are created and optimized. The parallelization factors of all nodes 
are balanced according to their computational complexity.

ScaleHLS, the previous version of ScaleFlow, is published at HPCA’22 and 
DAC’22 and open-sourced on GitHub:

Fig. 2: Students are requested to accelerate LeNet on PYNQ-Z2 using HLS. 
The figure shows the percentage of students’ submissions (Y axis) in each 
performance range (X axis). The performances are normalized with respect 
to expert design’s performance with dataflow (4994 FPS).

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

