X
ILLINOIS

ScaleFlow: Scalable High-Level Synthesis for Large Dataflow Applications

Hanchen Ye, Hyegang Jun, and Deming Chen University of lllinois at Urbana-Champaign

Motivation - Goal

MLIR-based ScaleFlow Framework

= Automatically generate efficient task-level pipeline (dataflow) in = Built on top of the MLIR compiler i ; i
. . Structure : Control : Payload : Data
large-scale HLS designs infrastructure [1] Py Torch Torch- o | ; ' ; |, @ Create Dataflow from T05A
MLIR 5B BB Lower TOSA to LinAlg*
= Take PyTorch model or HLS C++ as — (o) TOSA | O J
™ Non-dataflow M Dataflow : .. | | Tensor e Bufferize LinAlg* and Dataflow
inputs and generate optimized o | — 0 © Love Lindlg to Afines
1 : ogiCa ! . .
dataflow designs in HLS C++ Dataflow | | : : ’
| . . LinAlg | | lg e Optimize Affine loops
Throughput (FPS) = Logical dataflow: o: I : [orerer © Crezte Datafiow from Affine
: : | | : emRe
o High-level dataflow representation HLSC+ | » Ppolygeist o—— L L Anith — — o (@) Create buffer and stream
- | | | .
o Used for dataflow structure D ST ST l—ﬁ----ﬂ-- Affine e—:—— —bmoo oo l 9 —————— - Q Lower to physical Dataflow
0 1000 2000 3000 4000 Desian | :
neration and task di tch 9 ' DSE Physical g l : : | ﬁ Schedule and optimize Dataflow
' hroughput of LeNet on PYNQ-Z2 FPGA BENETAtoN ant taskt dispatt constraints . Dataflow & . : : : -4
Fig. 1: Throughput of LeNet on -) — I I I / Optimize buffer and stream
= Physical dataflow: : = ~-| Buffer+ gy
Y o . Affine + . . Stream 0 ° Create primitive and interface
Utilization (%) LUT BRAM DSP o Explicit shared-buffe.r and stream Optimized o Func | Directive 57 Pﬁ::if;i:e 5) Lower Dataflow to Func
Non-dataflow 65.40% 98.93% 100.00% channel representation HLS C++ [o — —— —— —— —e © s directive optimization
_/— I I I
Dataflow 67.90% 98.93% 100.00% o Used for dataflow scheduling and
e as I : Our Tools Our Dialects Existing Tools Existing Dialects Lowering Passes Transform Passes
Table. 1: Resource Utilization of LeNet on PYNQ-Z2 FPGA optimization C) ° ° @ ° @

Motivation - Challenges ResNet-18 Compilation Walkthrough

) : . . p
The gap between serial and dataflow programming model is huge / s Dispatch0 5 Schedule0 e
’ Y of o : Hp / - / ode onv.
o |t’s difficult for designers to construct legal and efficient K Task0 e (= Noden ;
dataflow structure manually K g = N Add Design Space Add U BTl
. .) ' ~ 7 N ~ /
= The design space of dataflow is huge] pu—— /\ Exploration - N/
o It’s difficult for designers to reason the optimal on-chip buffer weght o822 | Task1 Task1 Nodet1 Stream
g P P Conv External Memory Conv.
sizes, parallelization factors, streaming strategies, etc. é ________ Node2 Conv
l L al Stream '
| —_—
: I--------I o123 |4]|.
100.00% Task?2| Task2 N Node2 5/6(7/8|9].
wei {(64x64x3x3)
= \ | [Conv. Soft FIFO CO*”V' Nl
S 75.00% ! S g— v)
© 1 l |
= \ add_ ‘
2 0 \ Task3 Task3 4 N cf3/
o 50.00% \ as /| Task6 Conv. L 'l Node6 Conv.
5 \ ::> Add / ::> Add !
£ 2500% : | \ 2 /\ ! [[| Dispatcht 2 —— " || Schedulel
O 2.25% 0.00% 0.00% 1.12% ‘ _convolution o , o A
\
& 0.00% \‘ weight (128x64x3x3) Taskd E Task4 ’I '|I'_askc? E No £4/.\l Il '||'_askc?
(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1] \‘ | k< Conv. : 0a 5 Conv. . - o*a
: 2 'I 3 'I | |
Fig. 2: Students are requested to accelerate LeNet on PYNQ-Z2 using HLS. \\ § l | / l s ls" cal l] v
. 5 .. Cy . , , I '
The figure shows the percentage of students’ submissions (Y axis) in each \ © Task5 Task6 'Crg:“ = Node5 Node6 gg:“
. . . | i X x3x wei x64x1x g g
performance range (X axis). The performances are normalized with respect R St o il Conv. Conv. | D CO*nV- CO*nV- | : >
to expert design’s performance with dataflow (4994 FPS). \ Tasks ae " Tasks v \\ l | | | '\\ | v |
| add_ | \A/ |
\‘ Task7 Task7 \ Task2 Node7 b Task2
! relu \ Store Add \ Store
1 » - ~ Add \ \
\ | 7 \ Y |

ScaleHLS, the previous version of ScaleFlow, is published at HPCA’22 and
DAC’22 and open-sourced on GitHub:

»

ResNet-18 Sub-graph of ResNet-18 Logical Dataflow Physical Dataflow

= At physical dataflow level, shared-buffers and stream channels
are created and optimized. The parallelization factors of all nodes
are balanced according to their computational complexity.

= Start from the computation graph compiled from PyTorch model

= At logical dataflow level, the hierarchical dataflow structure is
created from the original computation graph

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

