

ScaleFlow: High-Level Synthesis for Large Dataflow Applications

<u>Hanchen Ye</u>, Deming Chen University of Illinois at Urbana-Champaign *hanchen8@illinois.edu, dchen@illinois.edu*

Technology Transfer

Industry Interactions

• Jin Yang (Intel)

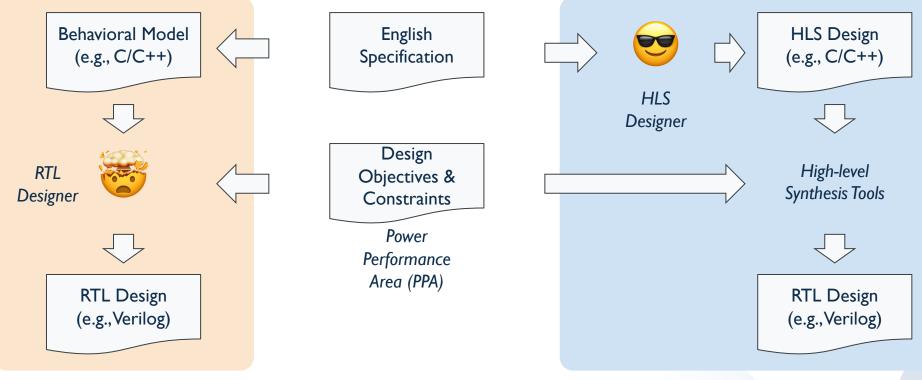
Internships

• Hanchen Ye (Intel Labs, 2022)

Publications/presentations

- High-Level Synthesis for Domain Specific Computing, ISPD'23 (Invited).
- HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis, ASPLOS'24 (To appear).

Background: High-level Synthesis (HLS)



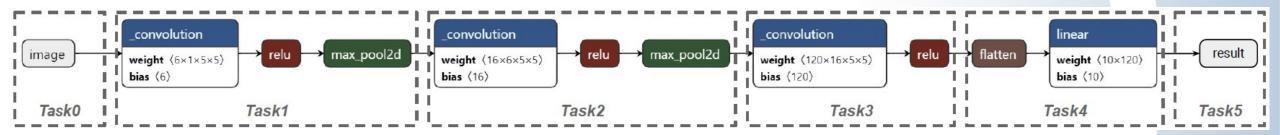
RTL Design Flow

- Manual optimization and scheduling
- Long design cycle
- Low portability against different PDK
- or PPA requirements

HLS Design Flow

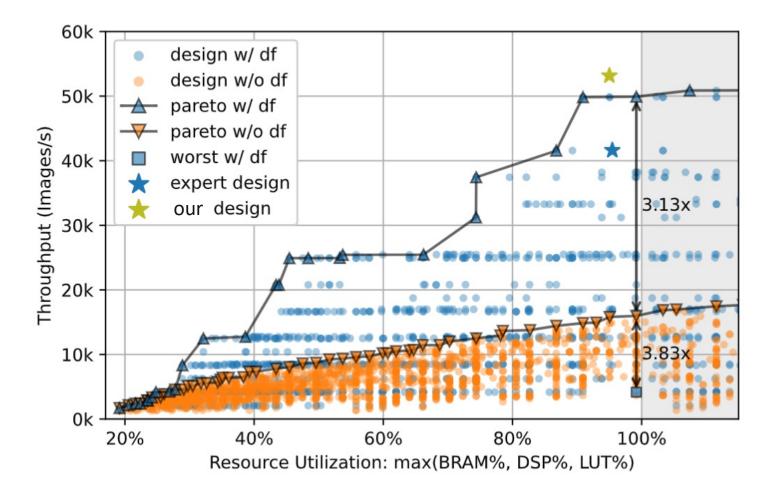
- Automated optimization and scheduling
- Short design cycle
- **High** portability against different PDK or PPA requirements

Motivation: LeNet as Example



- I. Rewrite PyTorch model to C++
- 2. Layer fusion and layer parallelization
 - Fusion strategy, parallel factor, etc.
- 3. Enable coarse-grained dataflow
 - Inter-task communication, external memory access, etc.
- 4. Tune design parameters
 - Iterate with downstream tools (2-10 minutes per iteration)

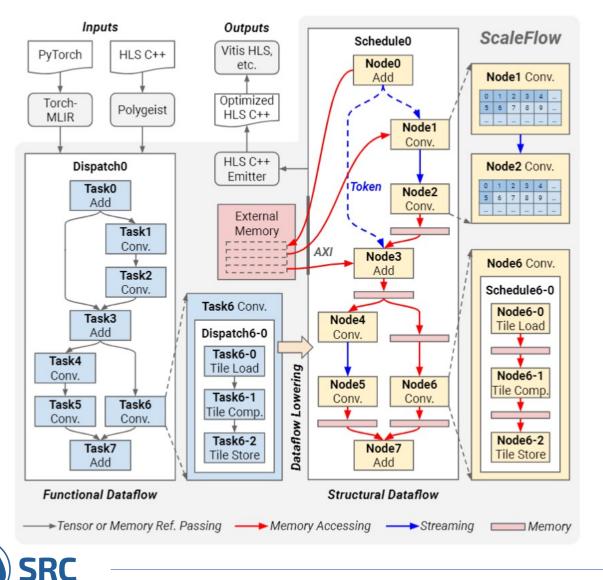
Motivation: LeNet as Example (Cont'd)



- Dataflow designs are Paretodominating
- Dataflow cannot guarantee a good trade-off
- Dataflow design space is vast and difficult to comprehend
 - The design space contains more than 2.4×10⁴ points
- Automated tool outperforms exhaustive search

Productivity - Performance - Scalability

ScaleFlow Framework



- PyTorch or C/C++ as input
- Optimized C++ dataflow design as output
- Two-level dataflow representation
 - Functional dataflow
 - Structural dataflow
- Decoupled functional and structural dataflow optimization

6

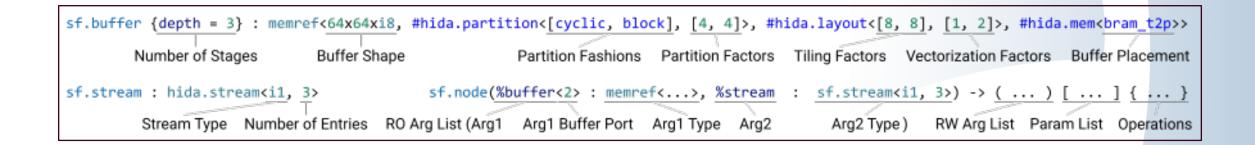
ScaleFlow Intermediate Representation

0	D							
Operation	Description							
Functional Dataflow								
task	Own a transparent region, can contain nest							
	dispatch operation with sub-tasks.							
dispatch	Launch multiple tasks in its region.							
	Structural Dataflow							
node	Own an isolated region, can contain nested							
	schedule operation with sub-nodes. Carry ex-							
	plicit I/O memory effect information.							
schedule	An isolated region with multiple nodes. Carry							
	explicit scheduling information.							
buffer	A buffer with variadic stages and ports and au-							
	tomatic ping-pong buffering semantics. Carry							
	explicit partition and layout information.							
stream	A stream channel with variadic entries.							
	Module Interface							
port	A memory or stream port with explicit type.							
bundle	A named bundle of ports.							
pack	Pack an external memory block into a port.							

• Functional dataflow

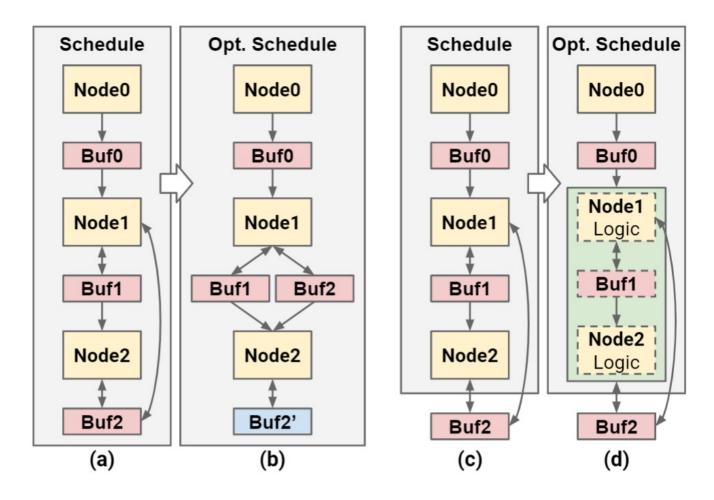
- Designed for efficient dataflow manipulation, such as task fusion
- Support both tensor and buffer semantics
- Structural dataflow
 - Designed for low-level microarchitectural optimizations
 - Explicit communication modeling
- Module interface
 - Designed to model external memory accesses

ScaleFlow Structural Dataflow



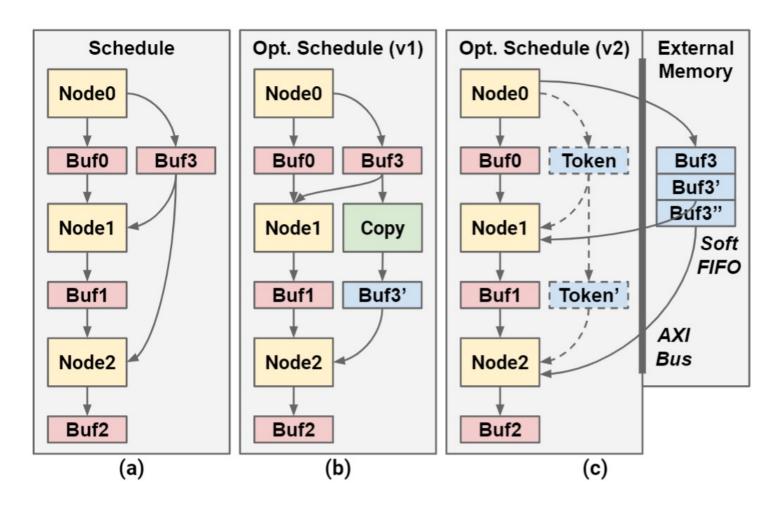
- Memory-Mapped and stream buffer representation
 - Explicit partition fashion, partition factors, tiling factors, vectorization factors, placement, etc.
 - Inherent ping-pong buffering semantics
- Isolated dataflow node representation
 - Isolated from context above
 - Explicit memory effect annotation: inputs, outputs, and parameters.

ScaleFlow Optimization: Multi-producer Elimination



- Multiple producers writing the same buffer simultaneously can introduce data racing
- Solution I: Buffer duplication
 - (a) => (b)
 - For buffers without external memory effects
- Solution 2: Node fusion
 - (c) => (d)
 - For external buffers

ScaleFlow Optimization: Datapath Balancing



- Imbalanced datapaths can degrade the overall pipeline performance
- Solution I: On-chip buffer duplication
 - (a) => (b)
 - Balance datapath with copy node insertion
- Solution 2: Soft FIFO in external memory
 - (a) => (c)
 - Token FIFOs are also generated to maintain the dependencies

ScaleFlow Optimization: Dataflow Parallelization

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = \dots; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

- For dataflow architecture, the local optimal schedule cannot automatically lead the global optimality
 - Memory data layout
 - Connectedness of nodes
 - Computation intensity of nodes
- Intensity and connection-aware dataflow parallelization
 - Constrain the local design space exploration with "intensity" and "connection" of nodes

PyTorch Evaluation

Model	Compile Time (s)	DSP Number	Throughput (Samples/s) Improvements			DSP Efficiency Improvements		
			ScaleFlow	ScaleFlow v.s. DNNBuilder	ScaleFlow v.s. ScaleHLS	ScaleFlow	ScaleFlow v.s. DNNBuilder	ScaleFlow v.s. ScaleHLS
ResNet-18	83.1	667	45.4	-	3.3 (13.88×)	73.8%	-	5.2% (14.24×)
MobileNet	110.8	518	137.4	-	15.4 (8.90×)	75.5%	-	9.6% (7.88×)
ZFNet	116.2	639	90.4	112.2 (0.81×)	-	82.8%	79.7% (1.04×)	-
VGG-16	199.9	1118	48.3	27.7 (1.74×)	6.9 (6.99×)	102.1%	96.2% (1.06×)	18.6% (5.49×)
YOLO	188.2	904	33.7	22.1 (1.52×)	-	94.3%	86.0% (1.10×)	-
MLP	40.9	164	938.9	-	152.6 (6.15×)	90.0%	-	17.6% (5.10×)
Geo. Mean	108.7			1.29 ×	8.54×		1.07 ×	7.49 ×

Conclusion

- A two-level dataflow intermediate representation, named Functional and Structural dataflow, for the optimization and code generation of dataflow architectures.
- A multi-level dataflow optimization pipeline, including multi-producer elimination, datapath balancing, dataflow parallelization, etc.
- Neural network evaluation on FPGA shows 1.07x and 7.49x higher computational efficiency compared to dedicated RTL accelerator and the SOTA HLS optimization flow.

