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Technology Transfer
Industry Interactions
• Jin Yang (Intel)

Internships
• Hanchen Ye (Intel Labs, 2022)

Publications/presentations
• High-Level Synthesis for Domain Specific Computing, ISPD’23 (Invited).
• HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis, 

ASPLOS’24 (To appear).
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Background: High-level Synthesis (HLS)
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RTL Design Flow HLS Design Flow

● Manual optimization and scheduling
● Long design cycle
● Low portability against different PDK 

or PPA requirements

● Automated optimization and scheduling
● Short design cycle
● High portability against different         

PDK or PPA requirements
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Motivation: LeNet as Example

1. Rewrite PyTorch model to C++
2. Layer fusion and layer parallelization

• Fusion strategy, parallel factor, etc.

3. Enable coarse-grained dataflow
• Inter-task communication, external memory access, etc.

4. Tune design parameters
• Iterate with downstream tools (2-10 minutes per iteration)
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Motivation: LeNet as Example (Cont’d)

• Dataflow designs are Pareto-
dominating
• Dataflow cannot guarantee a 

good trade-off

• Dataflow design space is vast 
and difficult to comprehend
• The design space contains more 

than 2.4×104 points

• Automated tool outperforms 
exhaustive search
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ScaleFlow Framework

• PyTorch or C/C++ as input
• Optimized C++ dataflow design as 

output
• Two-level dataflow representation

• Functional dataflow
• Structural dataflow

• Decoupled functional and structural 
dataflow optimization
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ScaleFlow Intermediate Representation

• Functional dataflow
• Designed for efficient dataflow 

manipulation, such as task fusion
• Support both tensor and buffer 

semantics

• Structural dataflow
• Designed for low-level micro-

architectural optimizations
• Explicit communication modeling

• Module interface
• Designed to model external memory 

accesses
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ScaleFlow Structural Dataflow

• Memory-Mapped and stream buffer representation
• Explicit partition fashion, partition factors, tiling factors, vectorization factors, placement, etc.
• Inherent ping-pong buffering semantics

• Isolated dataflow node representation
• Isolated from context above
• Explicit memory effect annotation: inputs, outputs, and parameters.
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ScaleFlow Optimization: Multi-producer Elimination

• Multiple producers writing the 
same buffer simultaneously can 
introduce data racing
• Solution 1: Buffer duplication

• (a) => (b)
• For buffers without external 

memory effects

• Solution 2: Node fusion
• (c) => (d)
• For external buffers
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ScaleFlow Optimization: Datapath Balancing
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• Imbalanced datapaths can 
degrade the overall pipeline 
performance
• Solution 1: On-chip buffer 

duplication
• (a) => (b)
• Balance datapath with copy 

node insertion

• Solution 2: Soft FIFO in 
external memory
• (a) => (c)
• Token FIFOs are also generated 

to maintain the dependencies



ScaleFlow Optimization: Dataflow Parallelization

• For dataflow architecture, the local optimal 
schedule cannot automatically lead the global 
optimality
• Memory data layout
• Connectedness of nodes
• Computation intensity of nodes

• Intensity and connection-aware dataflow 
parallelization
• Constrain the local design space exploration with 

“intensity” and “connection” of nodes
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PyTorch Evaluation
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Conclusion

• A two-level dataflow intermediate representation, named Functional and 
Structural dataflow,  for the optimization and code generation of dataflow 
architectures.
• A multi-level dataflow optimization pipeline, including multi-producer 

elimination, datapath balancing, dataflow parallelization, etc.
• Neural network evaluation on FPGA shows 1.07x and 7.49x higher 

computational efficiency compared to dedicated RTL accelerator and the 
SOTA HLS optimization flow.
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