
1

Hanchen Ye, Deming Chen
University of Illinois at Urbana-Champaign
hanchen8@illinois.edu, dchen@illinois.edu

ScaleFlow: High-Level Synthesis for Large
Dataflow Applications

Technology Transfer
Industry Interactions
• Jin Yang (Intel)

Internships
• Hanchen Ye (Intel Labs, 2022)

Publications/presentations
• High-Level Synthesis for Domain Specific Computing, ISPD’23 (Invited).
• HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis,

ASPLOS’24 (To appear).

2

Background: High-level Synthesis (HLS)

3

RTL Design Flow HLS Design Flow

● Manual optimization and scheduling
● Long design cycle
● Low portability against different PDK

or PPA requirements

● Automated optimization and scheduling
● Short design cycle
● High portability against different

PDK or PPA requirements

Behavioral Model
(e.g., C/C++)

RTL Design
(e.g., Verilog)

🤯RTL
Designer

HLS Design
(e.g., C/C++)

RTL Design
(e.g., Verilog)

😎
HLS

Designer

English
Specification

Design
Objectives &
Constraints

Power
Performance
Area (PPA)

High-level
Synthesis Tools

Motivation: LeNet as Example

1. Rewrite PyTorch model to C++
2. Layer fusion and layer parallelization

• Fusion strategy, parallel factor, etc.

3. Enable coarse-grained dataflow
• Inter-task communication, external memory access, etc.

4. Tune design parameters
• Iterate with downstream tools (2-10 minutes per iteration)

4

Motivation: LeNet as Example (Cont’d)

• Dataflow designs are Pareto-
dominating
• Dataflow cannot guarantee a

good trade-off

• Dataflow design space is vast
and difficult to comprehend
• The design space contains more

than 2.4×104 points

• Automated tool outperforms
exhaustive search

5

our

Productivity - Performance - Scalability

ScaleFlow Framework

• PyTorch or C/C++ as input
• Optimized C++ dataflow design as

output
• Two-level dataflow representation

• Functional dataflow
• Structural dataflow

• Decoupled functional and structural
dataflow optimization

6

ScaleFlow Intermediate Representation

• Functional dataflow
• Designed for efficient dataflow

manipulation, such as task fusion
• Support both tensor and buffer

semantics

• Structural dataflow
• Designed for low-level micro-

architectural optimizations
• Explicit communication modeling

• Module interface
• Designed to model external memory

accesses

7

ScaleFlow Structural Dataflow

• Memory-Mapped and stream buffer representation
• Explicit partition fashion, partition factors, tiling factors, vectorization factors, placement, etc.
• Inherent ping-pong buffering semantics

• Isolated dataflow node representation
• Isolated from context above
• Explicit memory effect annotation: inputs, outputs, and parameters.

8

ScaleFlow Optimization: Multi-producer Elimination

• Multiple producers writing the
same buffer simultaneously can
introduce data racing
• Solution 1: Buffer duplication

• (a) => (b)
• For buffers without external

memory effects

• Solution 2: Node fusion
• (c) => (d)
• For external buffers

9

ScaleFlow Optimization: Datapath Balancing

10

• Imbalanced datapaths can
degrade the overall pipeline
performance
• Solution 1: On-chip buffer

duplication
• (a) => (b)
• Balance datapath with copy

node insertion

• Solution 2: Soft FIFO in
external memory
• (a) => (c)
• Token FIFOs are also generated

to maintain the dependencies

ScaleFlow Optimization: Dataflow Parallelization

• For dataflow architecture, the local optimal
schedule cannot automatically lead the global
optimality
• Memory data layout
• Connectedness of nodes
• Computation intensity of nodes

• Intensity and connection-aware dataflow
parallelization
• Constrain the local design space exploration with

“intensity” and “connection” of nodes

11

PyTorch Evaluation

12

Conclusion

• A two-level dataflow intermediate representation, named Functional and
Structural dataflow, for the optimization and code generation of dataflow
architectures.
• A multi-level dataflow optimization pipeline, including multi-producer

elimination, datapath balancing, dataflow parallelization, etc.
• Neural network evaluation on FPGA shows 1.07x and 7.49x higher

computational efficiency compared to dedicated RTL accelerator and the
SOTA HLS optimization flow.

13

