Scalable High-Level Synthesis for Al Accelerator Design and Verification

Hanchen Ye

Oct. 18, 2023

Thesis Committee: Prof. Vikram Adve, Prof. Deming Chen (Chair), Prof. Jian Huang, Prof. Kai Li, Dr. Stephen Neuendorffer (*Alphabetical Order*)

AI is everywhere, changing everything

Image Classification

AlphaGo (Nature 2016)

AlphaFold (Nature 2021)

Computational cost of DNNs is growing

Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

Model size of language models is growing exponentially

[•] TinyML and Efficient Deep Learning Computing [Han, 2023]

Need for domain-specific accelerators

High-level Synthesis (HLS)

RTL Design Flow

- Manual optimization and scheduling
- Long design cycle
- Low portability against different PDK or PPA requirements

Automated optimization and scheduling

HLS Design Flow

- Short design cycle
- **High** portability against different PDK or PPA requirements

• PDK: Process design kit.

Research Overview

• Bolded papers are first or co-first authored.

Outline

• HLS Application

- HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation [DAC'20]
- DNNExplorer: a framework for modeling and exploring a novel paradigm of FPGA-based DNN accelerator (HybridDNN 2.0) [ICCAD'20]

• HLS Compilation

- ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation [HPCA'22]
- HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis (ScaleHLS 2.0) [ASPLOS'24]

HLS Algorithm

• ISDC: Feedback-guided Iterative SDC Scheduling for High-level Synthesis [DATE'24, under review]

HLS Application

HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation

DNNExplorer: a framework for modeling and exploring a novel paradigm of FPGA-based DNN accelerator (HybridDNN 2.0)

HLS Application Outline

- HybridDNN framework
- DNNExplorer framework

DNN Acceleration on FPGA

Roofline model: $Perf_{achievable}$ = min($CTC \times Bandwidth$, $Perf_{peak}$) CTC denotes computation-to-communication ratio, Bandwidth denotes external memory bandwidth.

- Data reuse optimization
 - $\circ \quad CTC\uparrow$
- DNN model compression
 - Including quantization, pruning, etc.
 - $\circ \quad \textit{Perf}_{\textit{peak}} \uparrow,\textit{CTC} \uparrow$
- Fast convolution algorithms*
 - Including Winograd, FFT, etc.
 - Reduce the arithmetic complexity of CONV by 2.25x (for Winograd)
 - Increase weight by 1.78x, reducing overall CTC by 0.56x (for Winograd)
 - $\circ \quad \textit{Perf}_{\textit{peak}} \uparrow, \textit{CTC} \downarrow$

Problems of Winograd-based DNN Accelerators

• Source: L. Liqiang et al. Evaluating fast algorithms for convolutional neural networks on FPGAs, in FCCM 2017.

HybridDNN Functional Modules

LOAD_WGT & LOAD_INP Module

- Load weights and input feature maps from external memory
- COMP Module
 - Carry out the computation in either Spatial or Winograd CONV mode

• SAVE Module

- Write back output feature maps
- Reorder output feature maps to ensure the data pattern in **external memory** matches the CONV mode of the successive layer

Compute Module Architecture

HybridDNN VGG16 Case Study

	[26]	[4]	[6]	Ours	
Device	Xilinx	Arria10	Xilinx	Xilinx	PYNQ
	VU9P	GX1150	VU9P	VU9P	Z1
Model	VGG16	VGG16	VGG16	VGG16	VGG16
Precision	16-bit	16-bit	16-bit	12-bit*	12-bit*
Freq.(MHz)	210	385	214	167	100
DSPs	4096	2756	5349	5163	220
CNN	1510	1700	1828 6	3375 7	83.3
Perf.(GOPS)	1510	1790	1020.0	5575.7	05.5
Power(W)	NA	37.5	49.3	45.9	2.6
DSP Effi.	0.37	0.65	0.34	0.65	0.38
(GOPS/DSP)	0.57	0.05	0.54	0.05	0.30
Energy Effi. (GOPS/W)	NA	47.78	37.1	73.5	32.0
(0013/W)	I				

*DNN parameters are quantized to 8-bit; input feature maps are set to 12-bit in PE due to the Winograd matrix transformation

- Xilinx VU9P Configuration:
 PI=4, *PO*=4, *PT*=6, *NI*=6
- PYNQ-Z1 Configuration:
 - *PI*=4, *PO*=4, *PT*=4, *NI*=1

	LUTs	DSPs	18Kb BRAMs
VU9P	706353 (59.8%)	5163 (75.5%)	3169 (73.4%)
PYNQ-Z1	37034 (69.61%)	220 (100%)	277 (98.93%)

HLS Application Outline

- HybridDNN framework
- DNNExplorer framework

HybridDNN - DNN Accelerator Paradigm #1

Conv

ReLu

Norm

Conv

Relu

Norm

•••

- Easy to scale up/down with given resources
- Easy to adapt regular DNNs •

- Same PEs reused by all layers; Process one after another layers
- Major buffers for weights, inputs, and partial outputs

DNN Accelerator Paradigm #2

Layer-wise pipeline architecture

- Better configuration for each layer
- Better throughput performance
- Better external memory BW utilization

- Dedicated PE for each stage
- Major buffers for weights and intermediate results

DNNExplorer (HybridDNN 2.0) Architecture

Dedicated design for more fine-grained adjustments Better adaptability to larger inputs Better scalability to deeper networks

DNNExplorer (HybridDNN 2.0) DSP Efficiency Study

Target 12 VGG-16 models (batch=1, w/ different input sizes, w/o FC layers)

Compare to Xilinx DPU (ZCU102), HybridDNN, DNNBuilder (KU115)

• DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. Zhang et al. ICCAD'18.

DNNExplorer (HybridDNN 2.0) Throughput Study

Target deeper DNN models with 13, 18, 28, 38 CONV layers

Challenges of Manual HLS Accelerator Design

- **Time-consuming:** Manual architecture and microarchitecture design, manual C/C++ code rewriting
- **Suboptimal:** Empirical parameter tuning, like parallel factors, buffer sizes, tiling sizes, etc.
- Low flexibility: Only support a small set of models

Automated HLS Optimization

HLS Compilation

ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation

HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis (ScaleHLS 2.0)

HLS Compilation Outline

• Motivation

- ScaleHLS framework
- ScaleHLS optimizations
- ScaleHLS design space exploration
- HIDA design space exploration

Motivations - Directive Optimizations

Motivations (Cont.) - Loop Optimizations

Motivations (Cont.) - Graph Optimizations

Input

Input Node fusion CONV Graph **IP** integration IP Optimizations Sample Task-level pipeline, etc. MatMul MatMul for (int i = 0; i < 32; i++) {</pre> for (int j = 0; j < 32; j++) { C[i][j] *= beta; for (int k = 0; k < 32; k++) { C[i][j] += alpha * A[i][k] * B[k][j]; } } } Loop interchange Loop Loop perfectization Optimizations for (int k = 0; k < 32; k++) { Loop tile, skew, etc. for (int i = 0; i < 32; i++) {</pre> for (int j = 0; j < 32; j++) { **if** (**k** == 0) C[i][i] *= beta: C[i][j] += alpha * A[i][k] * B[k][j]; } } } Loop pipeline, unroll Directive Function pipeline, inline Optimizations for (int k = 0; k < 32; k++) { Array partition, etc. for (int i = 0; i < 32; i++) {</pre> for (int j = 0; j < 32; j++) {</pre> #pragma HLS pipeline if (k == 0) C[i][i] *= beta; Generate RTL with States and etc. C[i][j] += alpha * A[i][k] * B[k][j]; } } } Pipeline II is 2 and overall latency is 65,552

Motivations (Cont.) - Overall

Difficulties:

- Low-productive and error-proning
- Hard to enable automated design space exploration (DSE)
- NOT scalable! 💢

Solve problems at the 'correct' level AND automate it MLIR

Approaches of ScaleHLS:

- Represent HLS designs at multiple levels of abstractions
- Make the *multi-level* optimizations automated and parameterized
- Enable an automated DSE
- End-to-end high-level analysis and optimization flow

HLS Compilation Outline

Motivation

- ScaleHLS framework
- ScaleHLS optimizations
- ScaleHLS design space exploration
- HIDA design space exploration

ScaleHLS Framework: Integration

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

ScaleHLS Framework: Integration (Cont'd)

[2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

ScaleHLS Framework: Representation

ScaleHLS Framework: Representation (Cont'd)

ScaleHLS Framework

Represent It!

Graph-level IR: TOSA, Linalg, and Tensor dialect.

Loop-level IR: Affine and Memref dialect. Can leverage the transformation and analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and Memref.

Optimize It!

Optimization Passes: Cover the graph, loop, and directive levels. Solve optimization problems at the 'correct' abstraction level.

QoR Estimator: Estimate the latency and resource utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized interfaces of all optimization passes and the QoR estimator. A playground of DSE. *statement*

Automated DSE Engine: Find the Pareto-frontier of the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS designs for downstream tools, such as Vivado HLS.

HLS Compilation Outline

- Motivation
- ScaleHLS framework
- ScaleHLS optimizations
- ScaleHLS design space exploration
- HIDA design space exploration

ScaleHLS Intra-node Transformations

Loop and

Directive

Opt in MLIR

	Passes	Target	Parameters
Graph	-legalize-dataflow	function	insert-copy
	-split-function	function	min-gran
	-affine-loop-perfectization	loop band	-
Loop	-affine-loop-order-opt	loop band	perm-map
	-remove-variable-bound	loop band	-
	-affine-loop-tile	loop	tile-size
	-affine-loop-unroll	loop	unroll-factor
Direct.	-loop-pipelining	loop	target-ii
	-func-pipelining	function	target-ii
	-array-partition	function	part-factors
Misc.	-simplify-affine-if	function	-
	-affine-store-forward	function	-
	-simplify-memref-access	function	-
	-canonicalize -cse	function	-

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

```
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j <= i; j++) {
        C[i][j] *= beta;
        for (int k = 0; k < 32; k++) {
            C[i][j] += alpha * A[i][k] * A[j][k];
    } }
} Baseline C</pre>
```

```
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A
#pragma HLS resource variable=C core=ram_s2p_bram
#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram
  for (int k = 0; k < 32; k += 2) {
    for (int i = 0; i < 32; i += 1) {</pre>
      for (int j = 0; j < 32; j += 1) {
\#pragma HLS pipeline II = 3
        if ((i - j) >= 0) {
          int v7 = C[i][j];
          int v8 = beta * v7;
          int v9 = A[i][k];
          int v10 = A[j][k];
          int v11 = (k == 0) ? v8 : v7;
          int v12 = alpha * v9;
          int v13 = v12 * v10;
          int v14 = v11 + v13;
          int v15 = A[i][(k + 1)];
          int v16 = A[j][(k + 1)];
          int v17 = alpha * v15;
          int v18 = v17 * v16:
                                                Optimized C
          int v19 = v14 + v18:
                                               emitted by the
          C[i][j] = v19;
} } } }
                                               C/C++ emitter
```
Loop Order Permutation

• The minimum *II* (Initiation Interval) of a loop pipeline can be calculated as:

 $II_{min} = \max_{d} \left(\left\lceil \frac{Delay_d}{Distance_d} \right\rceil \right)$

- *Delay_d* and *Distance_d* are the scheduling delay and distance (calculated from the dependency vector) of each loop-carried dependency *d*.
- To achieve a smaller *II*, the loop order permutation pass performs affine analysis and attempt to permute loops associated with loop-carried dependencies in order to maximize the *Distance*.

Loop Pipelining

- Apply loop pipelining directives to a loop and set a targeted initiation interval.
- In the IR of ScaleHLS, directives are represented using the HLSCpp dialect. In the example, the pipelined %j loop is represented as:

```
affine.for %j = 0 to 32 {
    ... ...
} attributes {loop_directive = #hlscpp.ld<pipeline=1,
targetII=3, dataflow=0, flatten=0, ... ... >}
```


Array Partition

- Array partition is one of the most important directives because the memories requires enough bandwidth to comply with the computation parallelism.
- The array partition pass analyzes the accessing pattern of each array and automatically select suitable partition fashion and factor.
- In the example, the %A array is accessed at address
 [i,k] and [i,k+1] simultaneously after pipelined, thus %A array is cyclically partitioned with two.

Transform and Analysis Library

- Apart from the optimizations, ScaleHLS provides a QoR estimator based on an ALAP scheduling algorithm. The memory ports are considered as non-shareable resources and constrained in the scheduling.
- The interfaces of all optimization passes and the QoR estimator are packaged into a library, which can be called by the DSE engine to generate and evaluate design points.

HLS Compilation Outline

- Motivation
- ScaleHLS framework
- ScaleHLS optimizations
- ScaleHLS design space exploration
- HIDA design space exploration

Intra-node Design Space Exploration - Observation

Pareto frontier of a GEMM kernel

- Latency and area are profiled for each design point
- Dark blue points are Pareto points
- Loop perfectization, loop order permutation, loop tiling, loop pipelining, and array partition passes are involved
- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

DSE algorithm:

1. Sample the whole design space and evaluate each sampled design point with the QoR estimator

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier
- 4. Repeat step (2) and (3) to update the discovered Pareto frontier

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier
- 4. Repeat step (2) and (3) to update the discovered Pareto frontier
- 5. Stop when no eligible neighbor can be found or meeting the early-termination criteria

Given the **Transform and Analysis Library** provided by ScaleHLS, the DSE engine can be extended to support other optimization algorithms in the future.

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

ScaleHLS Global Design Space Exploration

ScaleHLS DSE Results of C/C++ Kernel

Kernel	Prob. Size	Speedup	LP	RVB	Perm. Map	Tiling Sizes	Pipeline II	Array Partition
BICG	4096	41.7×	No	No	[1, 0]	[16, 8]	43	<i>A</i> :[8, 16], <i>s</i> :[16], <i>q</i> :[8], <i>p</i> :[16], <i>r</i> :[8]
GEMM	4096	768.1×	Yes	No	[1, 2, 0]	[8, 1, 16]	3	<i>C</i> :[1, 16], <i>A</i> :[1, 8], <i>B</i> :[8, 16]
GESUMMV	4096	199.1×	Yes	No	[1, 0]	[8, 16]	9	<i>A</i> :[16, 8], <i>B</i> :[16, 8], <i>tmp</i> :[16], <i>x</i> :[8], <i>y</i> :[16]
SYR2K	4096	384.0×	Yes	Yes	[1, 2, 0]	[8, 4, 4]	8	C:[4, 4], A:[4, 8], B:[4, 8]
SYRK	4096	384.1×	Yes	Yes	[1, 2, 0]	[64, 1, 1]	3	C:[1, 1], A:[1, 64]
TRMM	4096	590.9×	Yes	Yes	[1, 2, 0]	[4, 4, 32]	13	A:[4, 4], B:[4, 32]

DSE results of PolyBench-C computation kernels

- 1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and 53,200 LUTs. The data types of all kernels are single-precision floating-points.
- 2. Among all six benchmarks, a **speedup** ranging from 41.7× to 768.1× is obtained compared to the baseline design, which is the original computation kernel from PolyBench-C without the optimization of DSE.
- 3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.
- 4. In the Loop Order Optimization (**Perm. Map**), the *i*-th loop in the loop nest is permuted to location *PermMap* [*i*], where locations are from the outermost loop to inner.

ScaleHLS Results of DNN Models

Model	Speedup	Runtime (seconds)	Memory (SLR Util. %)	DSP (SLR Util. %)	LUT (SLR Util. %)	FF (SLR Util. %)	Our DSP Effi. (OPs/Cycle/DSP)	DSP Effi. of TVM-VTA [26]
ResNet-18	3825.0×	60.8	91.7Mb (79.5%)	1326 (58.2%)	157902 (40.1%)	54766 (6.9%)	1.343	0.344
VGG-16	1505.3×	37.3	46.7Mb (40.5%)	878 (38.5%)	88108 (22.4%)	31358 (4.0%)	0.744	0.296
MobileNet	1509.0×	38.1	79.4Mb (68.9%)	1774 (77.8%)	138060 (35.0%)	56680 (7.2%)	0.791	0.468

Optimization results of representative DNN models

- 1. The target platform is one SLR (super logic region) of Xilinx VU9P FPGA which is a large FPGA containing 115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR.
- 2. The PyTorch implementations are parsed into ScaleHLS and optimized using the proposed multi-level optimization methodology.
- 3. By combining the graph, loop, and directive levels of optimization, a **speedup** ranging from 1505.3× to 3825.0× is obtained compared to the baseline designs, which are compiled from PyTorch to HLS C/C++ through ScaleHLS but without the multi-level optimization applied.

HLS Compilation Outline

- Motivation
- ScaleHLS framework
- ScaleHLS optimizations
- ScaleHLS design space exploration
- HIDA design space exploration

Limitation of ScaleHLS

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Inter-kernel Correlation

- Node0 is connected to Node2 through buffer A
 - If buffer A is on-chip, the partition strategy of A is HIGHLY correlated with the parallel strategies of both Node0 and Node2
- Node1 is connected to Node2 through buffer B
 - $\circ \quad \text{Same as above} \quad$

Connectedness

- Node0, 1, and 2 have different trip count: 32*16, 16*16, and 16*16*16
 - To enable efficient pipeline execution of Node0, 1, and 2, their latencies after parallelization should be similar

Intensity

Simply merging the local Pareto curves will not work well!

What we did in HIDA

Step (1) Connectedness Analysis

Source	Torgat	Buffor	Permuta	tion Map	Scaling Map		
Source	Target	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

Permutation Map

• Record the alignment between loops

Step (1) Connectedness Analysis

Source	Targat	Duffor	Permuta	tion Map	Scaling Map		
Source	Target	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

• Permutation Map

• Record the alignment between loops

Scaling Map

• Record the alignment between strides

Affine Analysis-based

• Demand preprocessing: Loop normalize and perfectize, memory canonicalize

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][i] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Step (2) Node Sorting

Node	Connectedness	Intensity
Node0	1	512
Node1	1	256
Node2	2	4096

Descending Order of Connectedness

• Higher-connectedness node will affect more nodes

• Intensity as Tie-breaker

- Higher-intensity nodes are more computationally complex, being more sensitive to optimization
- Order: Node2 -> Node0 -> Node1

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int i=0; i<16; i++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
 - Overall parallel factor is 32
 - ScaleHLS DSE without constraints
 - Solution unroll factors: [4, 8, 1]

Source	Target	Buffor	Permutat	tion Map	Scaling Map		
Source	Target	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	[0, Ø, 1]	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	B	[Ø, 1, 0]	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
 - Overall parallel factor is 4, calculated from intensities of Node0 and 2 (32*512/4096)
 - ScaleHLS DSE with connectedness constraints, the unroll factors must NOT be mutually indivisible with constraints
 - Multiply with scaling map:
 - [4, 8, 1] [2, ∅, 1] = [8, ∅, 1]
 - Permute with permutation map:
 - permute([8, ∅, 1], [0, 2]) = [8, 1]
 - Solution unroll factors: [4, 1]

Source	Targat	Buffor	Permuta	tion Map	Scaling Map		
Source	larget	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0 Node1	Node2 Node2	A B	$[0, \emptyset, 1]$ $[\emptyset, 1, 0]$	[0, 2] [2, 1]	[0.5, 1] [1, 1]	[2, 0, 1] [0, 1, 1]	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
- Node1 Parallelization: [1, 2]
 - Overall parallel factor is 2, calculated from intensities of Node0 and 1 (32*256/4096)
 - ScaleHLS DSE with connectedness constraints
 - Solution unroll factors: [1, 2]

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int i=0; i<16; i++)
8
      B[k][i] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```


ResNet-18 Ablation Study on HIDA

ResNet-18 Ablation Study on HIDA (Cont'd)

HIDA (ScaleHLS 2.0) DSE Results of C/C++ Kernel

Vounal	HIDA	LUT	FF	DSP Number	Throughput (Samples/s)*				
Kerner	Time (s)	Number	Number		HIDA	ScaleHLS [68]	SOFF [37]	Vitis [34]	
2mm	0.65	38.8k	27.4k	269	239.22	122.39 (1.95×)	30.67 (7.80×)	1.23 (194.88×)	
3mm	0.79	38.7k	27.8k	243	175.43	92.33 (1.90×)	-	1.04 (167.99×)	
atax	2.06	44.6k	34.6k	260	1,021.39	932.26 (1.10×)	2,173.17 (0.47×)	103.18 (9.90×)	
bicg	0.72	16.0k	15.1k	61	2,869.69	2,869.61 (1.00×)	2,295.75 (1.25×)	104.19 (27.54×)	
correlation	0.91	14.5k	12.3k	66	67.33	59.77 (1.13×)	3.96 (16.99×)	1.32 (50.97×)	
gesummv	0.60	34.2k	22.8k	232	31,685.68	31,685.68 (1.00×)	3,466.70 (9.14×)	266.65 (118.83×)	
jacobi-2d	1.98	91.4k	56.6k	352	257.27	128.63 (2.00×)	-	2.71 (94.95×)	
mvt	0.42	23.8k	16.5k	162	9,979.04	4,989.02 (2.00×)	870.01 (11.47×)	62.13 (160.62×)	
seidel-2d	3.59	5.5k	2.5k	4	0.14	0.14 (1.00×)	-	0.11 (1.28×)	
symm	1.05	14.9k	9.5k	74	2.62	2.62 (1.00×)	-	2.02 (1.29×)	
syr2k	0.69	14.3k	12.8k	78	27.68	27.67 (1.00×)	-	1.44 (19.23×)	
Geo. Mean	0.99					1.29 ×	4.49 ×	31.08 ×	

* Numbers in () show throughput improvements of HIDA over others.

HIDA (ScaleHLS 2.0) Results of DNN Models

Model	HIDA	LUT Number	DSP Number	Tł	nroughput (San	nples/s)*	DSP Efficiency*		
	Compile Time (s)			HIDA	DNNBuilder [75]	ScaleHLS [68]	HIDA	DNNBuilder [75]	ScaleHLS [68]
ResNet-18	83.1	142.1k	667	45.4	-	3.3 (13.88×)	73.8%	-	5.2% (14.24×)
MobileNet	110.8	132.9k	518	137.4	-	15.4 (8.90×)	75.5%	-	9.6% (7.88×)
ZFNet	116.2	103.8k	639	90.4	112.2 (0.81×)	-	82.8%	79.7% (1.04×)	-
VGG-16	199.9	266.2k	1118	48.3	27.7 (1.74×)	6.9 (6.99×)	102.1%	96.2% (1.06×)	18.6% (5.49×)
YOLO	188.2	202.8k	904	33.7	22.1 (1.52×)	_	94.3%	86.0% (1.10×)	-
MLP	40.9	21.0k	164	938.9	=	152.6 (6.15×)	90.0%		17.6% (5.10×)
Geo. Mean	108.7				1.29 ×	8.54×		1.07 ×	7.49×

* Numbers in () show throughput/DSP efficiency improvements of HIDA over others.

Improve HLS core algorithms

- ScaleHLS and HIDA explore the **functional** and **architectural** design space of HLS-based accelerators
- ScaleHLS and HIDA treat HLS tool, such as AMD Vitis HLS, as a black box

Any opportunity to improve the HLS core algorithms?

HLS Algorithm

ISDC: Feedback-guided Iterative SDC Scheduling for High-level Synthesis

Automated feedback-directed optimization (FDO)

What is pipeline scheduling?

Intuition behind feedback-guided scheduling

Without feedback: **Delay**_G = 9ns

Intuition behind feedback-guided scheduling (Cont'd)

Intuition behind feedback-guided scheduling (Cont'd)

With feedback (e.g., OpenROAD): **Delay**_G = 7ns

Q: Where does the difference come from? A: Mainly comes from inter-node optimizations in downstream tools, such as logic synthesis.

Original pipeline scheduling in XLS

SDC (System of Difference Constraints) Scheduling [1]

Def-use Constraints, Resource Constraints, etc.

Linear Programming Problem

Minimize

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

SDC reformulation with feedbacks

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)
Automated iterative SDC scheduling

Full results

Benchmarks	Clock Period (ps)	Original XLS (SDC)					Ours (Iterative SDC)				
		STA Delay (ps)	Stage #	Register #	Schedule Runtime (s)	Minimum Iteration #	STA Delay (ps)	Stage #	Register #	Schedule Runtime (s)	Converge Iteration #
Design 1	2500	1338.35	2	99	0.14	1	1770.28	1	50	6.73	3
Design 2	5000	4056.07	2	109	0.11	1	4056.07	2	109	0.10	1
Design 3	2500	1633.77	2	192	0.08	1	2000.67	1	96	2.98	2
Design 4	5000	3559.35	3	138	0.13	1	4227.13	2	101	23.90	6
Design 5	2500	1981.34	3	71	0.12	1	2063.82	3	70	7.56	4
Design 6	5000	3549.27	3	134	0.11	1	3850.27	2	102	10.64	3
Design 7	5000	3859.1	3	162	0.12	1	3837.34	2	108	19.26	4
Design 8	2500	755.65	3	75	0.11	1	813.51	1	38	4.76	3
Design 9	5000	3764.42	5	298	0.15	1	3480.8	4	234	21.28	4
Design 10	5000	3668.75	6	480	0.44	1	3969.27	3	209	94.30	14
Design 11	5000	3165.32	8	1214	1.62	1	4048.76	5	729	101.61	13
Design 12	2500	2279.86	10	819	0.43	1	2463.29	6	474	27.62	9
Design 13	5000	3797.98	10	1055	1.79	3	4855.09	8	797	118.47	14
Design 14	2500	2473.14	12	1756	24.28	4	2333.69	12	1732	316.62	11
Design 15	2500	2128.78	26	3095	13.73	1	2439.58	25	2976	167.04	10
Design 16	2500	2267.34	112	85545	284.47	1	2425.89	97	73990	3280.88	11
Design 17	5000	4557.25	121	30569	240.90	1	4763.03	114	29242	3441.08	13
Geo. Mean	-	-	6.93	569.86	0.84	-	-	4.85	407.19	34.46	-
Ratio	-	-	100.0%	100.0%	100.0%	-	-	70.0%	71.5%	4080.5%	-

Future Research Plan

Future Research Plan Overview

- HLS-based Fully Homomorphic Encryption (FHE) acceleration
- Pythonic HLS design and scheduling language
- Equivalence Graph (E-Graph)-based automatic HLS scheduling
- Correct-by-construction HLS flow (WIP)
- Large Language Model (LLM)-driven HLS bug detection (WIP)
- Automatic HLS IP integration and optimization (WIP)
- Simultaneous HLS scheduling and datapath optimization (WIP)

Correct-by-Construction HLS

LLM-driven HLS Bug Detection

LLM-driven HLS Bug Detection (Cont.)

UFlow: Automated HLS IP Integration

```
@uflow.register ip("gemv")
                    ------ Register a IP "gemv"
class Gemv(uflow.Ip):
  def init (self):
     super(). init ()
     self.data_type = uflow.Float()
     self.index type = uflow.UInt(32)
     self.dim m = uflow.DynamicParam(self.index type, (16, 1024))
                                                IP runtime params
     self.dim n = uflow.DynamicParam(self.index type, (16, 1024))
     self.mat_a = uflow.InputPort(uflow.DynamicTensor( _______ IP input port "mat_a"
        self.data_type, [self.dim_m, self.dim_n],
        lambda m, n: [m / self.par_m, n, m % self.par_m])) ------ Shape and layout of "mat_a"
     self.vec b = uflow.InputPort(
        uflow.DynamicTensor(self.data type, [self.dim_n], lambda n: [n]), size=[1])
     self.vec c = uflow.OutputPort(
                                                          IP output port "vec_c"
        uflow.DynamicTensor(self.data type, [self.dim m],
        lambda m: [m / self.par_m, m % self.par_m]), size=[1]) ------> Size 1 indicates "vec c" is FIFO
  def semantics(self):
     for m in self.dim m:
                                              ----- IP semantics for pattern match
        for n in self.dim n:
           self.vec c[m] += self.mat a[m, n] * self.vec b[n]
```

UFlow: Automated HLS IP Integration (Cont.)

PyTorch Compiler for Versal

HIDA Integration

- Integrated before CIRCT
- FPGA logic optimization
- FPGA-AIE communication optimization

UFlow Integration

- Take HLS and AIE IP library registration as input
- Automatic HLS and AIE IPs integration
- Inter-IP communication optimization

Simultaneous HLS scheduling and datapath optimization

1. Automatic Datapath Optimization using E-Graphs. Coward et al. DAC'23.

Thanks for your time!

Hanchen Ye Oct. 18, 2023