
Scalable High-Level Synthesis for AI
Accelerator Design and Verification

Hanchen Ye
Oct. 18, 2023

Thesis Committee: Prof. Vikram Adve, Prof. Deming Chen (Chair), Prof. Jian Huang,
Prof. Kai Li, Dr. Stephen Neuendorffer (Alphabetical Order)

AI is everywhere, changing everything

Computational cost of DNNs is growing

● Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

Model size of language models is growing exponentially

● TinyML and Efficient Deep Learning Computing [Han, 2023]

Need for domain-specific accelerators

ASIC

Performance

Deploy
Speed

CPU
GPU

FPGA

High-level
Synthesis

(HLS)

● A New Golden Age for Computer Architecture [Hennessy et al., IEEE 2020]

High-level Synthesis (HLS)

RTL Design Flow

Behavioral Model
(e.g., C/C++)

RTL Design
(e.g., Verilog)

🤯RTL
Designer

English
Specification

Design
Objectives &
Constraints

Power
Performance
Area (PPA)

HLS Design Flow

HLS Design
(e.g., C/C++)

RTL Design
(e.g., Verilog)

😎
HLS

Designer

High-level
Synthesis Tools

● Manual optimization and scheduling
● Long design cycle
● Low portability against different PDK or

PPA requirements

● Automated optimization and scheduling
● Short design cycle
● High portability against different PDK or

PPA requirements

● PDK: Process design kit.

Research Overview

● Bolded papers are first or co-first authored.

HLS
Application

DNN Accelerator Fast Convolution Heterogeneous Arch.

FPGA’23
ICCAD’20
DAC’20

…
…

HLS
Compilation

MLIR Dataflow Optimization Loop Optimization

ASPLOS’24
TECHCON’23

ISPD’23
TRETS’22
DAC’22

HPCA’22

…
…

HLS
Algorithm

HLS Logic
Synth.

Feedback-directed Opt.Scheduling

DATE’24
(Under Review)

…
…

Toward Scalable and Efficient HLS Solution for AI Acceleration

Outline
● HLS Application

○ HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and
Implementation [DAC’20]

○ DNNExplorer: a framework for modeling and exploring a novel paradigm of FPGA-based DNN
accelerator (HybridDNN 2.0) [ICCAD’20]

● HLS Compilation
○ ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate

Representation [HPCA’22]
○ HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis (ScaleHLS 2.0) [ASPLOS’24]

● HLS Algorithm
○ ISDC: Feedback-guided Iterative SDC Scheduling for High-level Synthesis [DATE’24, under review]

HLS Application

HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and
Implementation

DNNExplorer: a framework for modeling and exploring a novel paradigm of
FPGA-based DNN accelerator (HybridDNN 2.0)

HLS Application Outline
● HybridDNN framework

● DNNExplorer framework

DNN Acceleration on FPGA

Layer A is memory-bounded
Layer B is computation-bounded

CTC

Pe
rf

or
m

an
ce

 (G
O

PS
)

A

B
A’

B’

● Source: L. Andrew et al. Fast algorithms for convolutional neural networks, in CVPR 2016.

Roofline model: 𝑃𝑒𝑟𝑓𝑎𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒= min (𝐶𝑇𝐶 × 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑃𝑒𝑟𝑓𝑝𝑒𝑎𝑘)
𝐶𝑇𝐶 denotes computation-to-communication ratio, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ denotes external memory bandwidth.

● Data reuse optimization
○ 𝐶𝑇𝐶 ↑

● DNN model compression
○ Including quantization, pruning, etc.
○ 𝑃𝑒𝑟𝑓𝑝𝑒𝑎𝑘 ↑, 𝐶𝑇𝐶 ↑

● Fast convolution algorithms*
○ Including Winograd, FFT, etc.
○ Reduce the arithmetic complexity of

CONV by 2.25x (for Winograd)
○ Increase weight by 1.78x, reducing overall

CTC by 0.56x (for Winograd)
○ 𝑃𝑒𝑟𝑓𝑝𝑒𝑎𝑘 ↑, 𝐶𝑇𝐶 ↓

Problems of Winograd-based DNN Accelerators

Homogeneous
Spatial

Processing
Engine (PE)

Weight Buffer

Acc. Buffer

I/O Buffer

FPGA

Homogeneous
Winograd

Processing
Engine (PE)CTC

Pe
rf

or
m

an
ce

 (G
O

PS
)

C spat

C wino

2.25x

0.56x

Winograd is inefficient in some cases

Low efficiency when Spatial CONV
outperforms Winograd CONV

Problem

● Source: L. Liqiang et al. Evaluating fast algorithms for convolutional neural networks on FPGAs, in FCCM 2017.

Hybrid Spatial
and Winograd

Processing
Engine (PE)

HybridDNN Functional Modules

Module-level Pipeline

● LOAD_WGT & LOAD_INP Module
○ Load weights and input feature maps from

external memory

● COMP Module
○ Carry out the computation in either Spatial or

Winograd CONV mode

● SAVE Module
○ Write back output feature maps
○ Reorder output feature maps to ensure the data

pattern in external memory matches the CONV
mode of the successive layer

4 modes
SPAT-to-SPAT
SPAT-to-WINO
WINO-to-WINO
WINO-to-SPAT

2 modes
SPAT
WINO

2 modes
SPAT
WINO

2 modes
SPAT
WINO

Compute Module Architecture

HybridDNN VGG16 Case Study

● Xilinx VU9P Configuration:
○ 𝑃𝐼=4, 𝑃𝑂=4, 𝑃𝑇=6, 𝑁𝐼=6

● PYNQ-Z1 Configuration:
○ 𝑃𝐼=4, 𝑃𝑂=4, 𝑃𝑇=4, 𝑁𝐼=1

HLS Application Outline
● HybridDNN framework

● DNNExplorer framework

HybridDNN - DNN Accelerator Paradigm #1

Acc Buff

PEs

External memory

Weight Buff

I/O
Buff

Generic reusable architecture

Conv
ReLu
Norm

MaxPool
Conv
ReLu
Norm

MaxPool
…

Input DNN

Conv ReLu Norm MaxPool

Memory

● Same PEs reused by all layers;
Process one after another layers

● Easy to scale up/down with given resources
● Easy to adapt regular DNNs

● Major buffers for weights, inputs,
and partial outputs

DNN Accelerator Paradigm #2

PEsIn
Buff

Weight Buff

External memory

PEsIn
Buff

Weight Buff

Layer-wise pipeline architecture

Conv
ReLu
Norm

MaxPool
Conv
ReLu
Norm

MaxPool
…

Input DNN Conv ReLu NormStage 1

Stage 2 MaxPool

Conv ReLu NormStage 3

Stage 4 MaxPool

● Dedicated PE for each stage

● Better configuration for each layer
● Better throughput performance
● Better external memory BW utilization

● Major buffers for weights and
intermediate results

DNNExplorer (HybridDNN 2.0) Architecture

split-point

Larger FMs (H, W)
More diversity

Smaller FMs (H, W)
Less diversity Paradigm #1

HybridDNN
Paradigm #2
DNNBuilder

Dedicated design for more fine-grained adjustments

Better adaptability to larger inputs

Better scalability to deeper networks

● DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. Zhang et al. ICCAD’18.

DNNExplorer (HybridDNN 2.0) DSP Efficiency Study

4.4x
2.0x

Target 12 VGG-16 models (batch=1, w/ different input sizes, w/o FC layers)

Compare to Xilinx DPU (ZCU102), HybridDNN, DNNBuilder (KU115)

● DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. Zhang et al. ICCAD’18.

DNNExplorer (HybridDNN 2.0) Throughput Study

● DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs. Zhang et al. ICCAD’18.

Target deeper DNN models with 13, 18, 28, 38 CONV layers

4.2x

Challenges of Manual HLS Accelerator Design

● Time-consuming: Manual architecture and microarchitecture design, manual
C/C++ code rewriting

● Suboptimal: Empirical parameter tuning, like parallel factors, buffer sizes,
tiling sizes, etc.

● Low flexibility: Only support a small set of models

Automated HLS Optimization

HLS Compilation

ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level
Intermediate Representation

HIDA: A Hierarchical Dataflow Compiler for High-Level Synthesis (ScaleHLS 2.0)

HLS Compilation Outline
● Motivation

● ScaleHLS framework

● ScaleHLS optimizations

● ScaleHLS design space exploration

● HIDA design space exploration

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

How do we do HLS
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations - Directive Optimizations

Generate RTL with and etc.

Pipeline II is 5 and overall latency is 183,296

How do we do HLS
designs?

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Motivations (Cont.) - Loop Optimizations

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

MatMul

Sample

CONV

Input

MatMul

IP

Input

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (Cont.) - Graph Optimizations

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple

levels of abstractions

● Make the multi-level optimizations
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and
optimization flow

Solve problems at
the ‘correct’ level
AND automate it

Manual Code RewritingMatMul

Sample

CONV

Input

MatMul

IP

Input

Motivations (Cont.) - Overall

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

HLS Compilation Outline
● Motivation

● ScaleHLS framework

● ScaleHLS optimizations

● ScaleHLS design space exploration

● HIDA design space exploration

ScaleHLS Framework: Integration

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Integration (Cont’d)
Inputs

C/C++ Polygeist [1]

PyTorch Torch-MLIR [2]

Outputs

C/C++ C/C++ Emitter

Verilog CIRCT [3]

(work-in-progress)

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Representation

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = affine.load %W[%r, %s, %c, %k] : memref<3x3x3x64xi8>
 %o = affine.load %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 %mul = arith.muli %i, %w : i8
 %add = arith.addi %o, %mul : i8
 affine.store %add, %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 }
 }
 }
 }
 }
} Conv2D Loop-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

ScaleHLS Framework: Representation (Cont’d)

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 step 2 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = vector.transfer_read %W[%r, %s, %c, %k], : memref<3x3x3x64xi8>, vector<2xi8>

 %mul = "hlscpp.mul_prim"(%i, %w) : (i8, vector<2xi8>) -> vector<2xi16>

 %mul32 = "hlscpp.cast_prim"(%mul) : (vector<2xi16>) -> vector<2xi32>

 } {loop_directive = #hlscpp.ld<pipeline=true, targetII=1, ...}
 }
 }
 }
 }
} Conv2D Directive-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

Represent It!

Graph-level IR: TOSA, Linalg, and Tensor dialect.

Loop-level IR: Affine and Memref dialect. Can
leverage the transformation and analysis libraries
applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and Memref.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

ScaleHLS Framework

HLS Compilation Outline
● Motivation

● ScaleHLS framework

● ScaleHLS optimizations

● ScaleHLS design space exploration

● HIDA design space exploration

ScaleHLS Intra-node Transformations

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop Order Permutation

● The minimum 𝐼𝐼 (Initiation Interval) of a loop pipeline can
be calculated as:

● 𝐷𝑒𝑙𝑎𝑦𝑑 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑 are the scheduling delay and
distance (calculated from the dependency vector) of
each loop-carried dependency 𝑑.

● To achieve a smaller 𝐼𝐼, the loop order permutation pass
performs affine analysis and attempt to permute loops
associated with loop-carried dependencies in order to
maximize the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.

ScaleHLS Intra-node Transformations (Cont.)

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Loop Pipelining

● Apply loop pipelining directives to a loop and set a
targeted initiation interval.

● In the IR of ScaleHLS, directives are represented using
the HLSCpp dialect. In the example, the pipelined %j
loop is represented as:

 affine.for %j = 0 to 32 {

 … …

 } attributes {loop_directive = #hlscpp.ld<pipeline=1,

 targetII=3, dataflow=0, flatten=0, … … >}

ScaleHLS Intra-node Transformations (Cont.)

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Array Partition

● Array partition is one of the most important directives
because the memories requires enough bandwidth to
comply with the computation parallelism.

● The array partition pass analyzes the accessing pattern
of each array and automatically select suitable partition
fashion and factor.

● In the example, the %A array is accessed at address
[i,k] and [i,k+1] simultaneously after pipelined,
thus %A array is cyclically partitioned with two.

Simplify if ops;
Store ops forward;
Simplify memref ops

ScaleHLS Intra-node Transformations (Cont.)

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

Transform and Analysis Library

● Apart from the optimizations, ScaleHLS provides a QoR
estimator based on an ALAP scheduling algorithm. The
memory ports are considered as non-shareable
resources and constrained in the scheduling.

● The interfaces of all optimization passes and the QoR
estimator are packaged into a library, which can be
called by the DSE engine to generate and evaluate
design points.

ScaleHLS Intra-node Transformations (Cont.)

HLS Compilation Outline
● Motivation

● ScaleHLS framework

● ScaleHLS optimizations

● ScaleHLS design space exploration

● HIDA design space exploration

Intra-node Design Space Exploration - Observation

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated

Intra-node Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier

Intra-node Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated

Intra-node Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated

Intra-node Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

5. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

We have an ‘estimated’
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated

Intra-node Design Space Exploration (Cont.)

ScaleHLS Global Design Space Exploration

Graph
Optimizations

MatMul

Sample

CONV

Input

MatMul

IP

Input

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Directive
Optimizations

Step (1) Local single-kernel loop and directive DSE

Band0

Pareto
Merge
Iter. 0

Band1

Band2

Band4

Band3 Pareto
Merge
Iter. 1

Call Graph

Step (2) Global multi-kernel Pareto curving merging

ScaleHLS DSE Results of C/C++ Kernel

DSE results of PolyBench-C computation kernels
1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and

53,200 LUTs. The data types of all kernels are single-precision floating-points.

2. Among all six benchmarks, a speedup ranging from 41.7× to 768.1× is obtained compared to the baseline
design, which is the original computation kernel from PolyBench-C without the optimization of DSE.

3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.

4. In the Loop Order Optimization (Perm. Map), the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝 [𝑖],
where locations are from the outermost loop to inner.

ScaleHLS Results of DNN Models

Optimization results of representative DNN models
1. The target platform is one SLR (super logic region) of Xilinx VU9P FPGA which is a large FPGA containing

115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR.

2. The PyTorch implementations are parsed into ScaleHLS and optimized using the proposed multi-level
optimization methodology.

3. By combining the graph, loop, and directive levels of optimization, a speedup ranging from 1505.3× to 3825.0×
is obtained compared to the baseline designs, which are compiled from PyTorch to HLS C/C++ through
ScaleHLS but without the multi-level optimization applied.

HLS Compilation Outline
● Motivation

● ScaleHLS framework

● ScaleHLS optimizations

● ScaleHLS design space exploration

● HIDA design space exploration

Limitation of ScaleHLS

Inter-kernel Correlation

● Node0 is connected to Node2 through buffer A
○ If buffer A is on-chip, the partition strategy

of A is HIGHLY correlated with the parallel
strategies of both Node0 and Node2

● Node1 is connected to Node2 through buffer B
○ Same as above

● Node0, 1, and 2 have different trip count: 32*16,
16*16, and 16*16*16

○ To enable efficient pipeline execution of
Node0, 1, and 2, their latencies after
parallelization should be similar

Simply merging the local Pareto curves will not work well!

Connectedness

Intensity

What we did in HIDA

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

0

1
∅

0
2

What we did in HIDA (Cont’d)

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

● Scaling Map
○ Record the alignment between strides

● Affine Analysis-based
○ Demand preprocessing: Loop normalize

and perfectize, memory canonicalize

∅
1

0.5
1

2

What we did in HIDA (Cont’d)
Step (2) Node Sorting

Node Connectedness Intensity
Node0 1 512

Node1 1 256

Node2 2 4096

● Descending Order of Connectedness
○ Higher-connectedness node will affect

more nodes

● Intensity as Tie-breaker
○ Higher-intensity nodes are more

computationally complex, being more
sensitive to optimization

● Order: Node2 -> Node0 -> Node1

What we did in HIDA (Cont’d)
Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]
○ Overall parallel factor is 32
○ ScaleHLS DSE without constraints
○ Solution unroll factors: [4, 8, 1]

What we did in HIDA (Cont’d)
Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]
○ Overall parallel factor is 4, calculated from

intensities of Node0 and 2 (32*512/4096)
○ ScaleHLS DSE with connectedness

constraints, the unroll factors must NOT
be mutually indivisible with constraints

■ Multiply with scaling map:
■ [4, 8, 1] ⊙ [2, ∅, 1] = [8, ∅, 1]
■ Permute with permutation map:
■ permute([8, ∅, 1], [0, 2]) = [8, 1]

○ Solution unroll factors: [4, 1]

What we did in HIDA (Cont’d)
Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]

● Node1 Parallelization: [1, 2]
○ Overall parallel factor is 2, calculated from

intensities of Node0 and 1 (32*256/4096)
○ ScaleHLS DSE with connectedness

constraints
○ Solution unroll factors: [1, 2]

What we did in HIDA (Cont’d)
Step (3) Node Parallelization

Intensity-aware (IA)
Connectedness-aware (CA)

HIDA DSE

Naive
ScaleHLS

DSE

8x
8x
1x

ResNet-18 Ablation Study on HIDA

(a)

3.7X

(b)

1.2X

(c)

44.3X

● IA+CA parallelization can determine
whether the solution is scalable

ResNet-18 Ablation Study on HIDA (Cont’d)

(a)

4.5X

(b)

4.7X

(c)

1.0X

● IA+CA parallelization can determine
whether the solution is scalable

● IA+CA parallelization can significantly
reduce resource utilization

HIDA (ScaleHLS 2.0) DSE Results of C/C++ Kernel

HIDA (ScaleHLS 2.0) Results of DNN Models

Improve HLS core algorithms

● ScaleHLS and HIDA explore the functional and architectural design space of
HLS-based accelerators

● ScaleHLS and HIDA treat HLS tool, such as AMD Vitis HLS, as a black box

Any opportunity to improve the HLS core algorithms?

HLS Algorithm

ISDC: Feedback-guided Iterative SDC Scheduling for
High-level Synthesis

Behavioral Model
(e.g., C/C++)

RTL Design
(e.g., Verilog)

🤯RTL
Designer

English
Specification

Design
Objectives &
Constraints

Power
Performance
Area (PPA)

HLS Design
(e.g., C/C++)

RTL Design
(e.g., Verilog)

😎
HLS

Designer

High-level
Synthesis Tools

Automated feedback-directed optimization (FDO)

● PDK: Process design kit.

Logic Synthesis,
Place & Route,

… …

Timing Closure,
PPA Closure,

… …

Logic Synthesis,
Place & Route,

… …

Timing Closure,
PPA Closure,

… …

Automated
Feedback

(congestion,
timing, etc)

Manual
Feedback

Incomprehensive

What is pipeline scheduling?

[7:0]

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Pipeline Scheduling in XLS
Target Clock Period: 10ns
Objective: Minimize register number

Scheduled
XLS Graph

[7:0]

[7:0] [7:0]

[7:0]

[7:0]

2nd Cycle1st Cycle

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C
Unscheduled

XLS Graph
[7:0]

[7:0]

[7:0]

Intuition behind feedback-guided scheduling

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

Subgraph G

Scheduled
XLS Graph

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

Intuition behind feedback-guided scheduling (Cont’d)

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

With feedback (e.g., OpenROAD): DelayG = 7ns

Refined
XLS Graph

[7:0]

[7:0]

[7:0]

[7:0]

Subgraph G
(7ns) [7:0]

[7:0]

Intuition behind feedback-guided scheduling (Cont’d)

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

With feedback (e.g., OpenROAD): DelayG = 7ns

Refined
XLS Graph

Q: Where does the difference come from?
A: Mainly comes from inter-node optimizations in downstream tools,
such as logic synthesis.

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]Subgraph G
(7ns) 8 registers are reduced

Original pipeline scheduling in XLS

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Unscheduled
XLS Graph

SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
Delay_1_8 = 12ns > 10ns ⇒ cycle_8 - cycle_1 >= 1
Delay_2_8 = 12ns > 10ns ⇒ cycle_8 - cycle_2 >= 1

… …
(for each path longer than 10ns)

Variables:
cycle_1
cycle_2
… …

cycle_9
Minimize

Register Number

Linear Programming
Problem

Def-use Constraints, Resource Constraints, etc.

https://ieeexplore.ieee.org/document/1688836

SDC reformulation with feedbacks

SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
Delay_1_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_1 >= 1
Delay_2_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_2 >= 1

… …
(for each path longer than 10ns)

Variables:
cycle_1
cycle_2
… …

cycle_9
Minimize

Register Number

Linear Programming
Problem

Def-use Constraints, Resource Constraints, etc.

Subgraph G
(7ns)

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Unscheduled
XLS Graph

Accurate feedbacks
⇒ Less constraints
⇒ Larger search space
⇒ Better results

https://ieeexplore.ieee.org/document/1688836

Automated iterative SDC scheduling

All-paths Delay
Recalculation

Downstream
Tools

OpenROAD
Proprietary Tools

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

SDC
Reformulation

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

N4
6ns

N5
5ns

N1
3ns

N2
3ns

Subgraph
Extraction

Subgraph g
(7ns)

Iterative SDC
Scheduling

Critical to avoid
combinatorial
explosion

Full results

Benchmarks Clock
Period (ps)

Original XLS (SDC) Ours (Iterative SDC)
STA Delay

(ps) Stage # Register # Schedule
Runtime (s)

Minimum
Iteration #

STA Delay
(ps) Stage # Register # Schedule

Runtime (s)
Converge
Iteration #

Design 1 2500 1338.35 2 99 0.14 1 1770.28 1 50 6.73 3
Design 2 5000 4056.07 2 109 0.11 1 4056.07 2 109 0.10 1
Design 3 2500 1633.77 2 192 0.08 1 2000.67 1 96 2.98 2
Design 4 5000 3559.35 3 138 0.13 1 4227.13 2 101 23.90 6
Design 5 2500 1981.34 3 71 0.12 1 2063.82 3 70 7.56 4
Design 6 5000 3549.27 3 134 0.11 1 3850.27 2 102 10.64 3
Design 7 5000 3859.1 3 162 0.12 1 3837.34 2 108 19.26 4
Design 8 2500 755.65 3 75 0.11 1 813.51 1 38 4.76 3
Design 9 5000 3764.42 5 298 0.15 1 3480.8 4 234 21.28 4

Design 10 5000 3668.75 6 480 0.44 1 3969.27 3 209 94.30 14
Design 11 5000 3165.32 8 1214 1.62 1 4048.76 5 729 101.61 13
Design 12 2500 2279.86 10 819 0.43 1 2463.29 6 474 27.62 9
Design 13 5000 3797.98 10 1055 1.79 3 4855.09 8 797 118.47 14
Design 14 2500 2473.14 12 1756 24.28 4 2333.69 12 1732 316.62 11
Design 15 2500 2128.78 26 3095 13.73 1 2439.58 25 2976 167.04 10
Design 16 2500 2267.34 112 85545 284.47 1 2425.89 97 73990 3280.88 11
Design 17 5000 4557.25 121 30569 240.90 1 4763.03 114 29242 3441.08 13
Geo. Mean - - 6.93 569.86 0.84 - - 4.85 407.19 34.46 -

Ratio - - 100.0% 100.0% 100.0% - - 70.0% 71.5% 4080.5% -

Future Research Plan

Future Research Plan Overview

HLS
Application

HLS
Programming

Language

HLS
Verification

HLS
Compilation

HLS
Algorithm

● HLS-based Fully Homomorphic Encryption (FHE) acceleration

● Pythonic HLS design and scheduling language
● Equivalence Graph (E-Graph)-based automatic HLS scheduling

● Correct-by-construction HLS flow (WIP)
● Large Language Model (LLM)-driven HLS bug detection (WIP)
● Automatic HLS IP integration and optimization (WIP)

● Simultaneous HLS scheduling and datapath optimization (WIP)

Correct-by-Construction HLS

LLM-driven HLS Bug Detection

LLM-driven HLS Bug Detection (Cont.)

HLS Source Code

Fault Types

Prompt
Generator

Input Fault Injection

Code
Generator

LLM/
GPT4 HLS Source Code(w/

specific faults)

Output

Training DatasetTraining Dataset

Fault Localization

LLM

Error
Detector

Step 1: Dataset Generator

Fine-tuning
Step 2: LLM Fine-tuning

UFlow: Automated HLS IP Integration
@uflow.register_ip("gemv")

class Gemv(uflow.Ip):

 def __init__(self):

 super().__init__()

 self.data_type = uflow.Float()

 self.index_type = uflow.UInt(32)

 self.par_m = uflow.CompileParam(self.index_type, [2, 4, 8])

 self.dim_m = uflow.DynamicParam(self.index_type, (16, 1024))

 self.dim_n = uflow.DynamicParam(self.index_type, (16, 1024))

 self.mat_a = uflow.InputPort(uflow.DynamicTensor(

 self.data_type, [self.dim_m, self.dim_n],

 lambda m, n: [m / self.par_m, n, m % self.par_m]))

 self.vec_b = uflow.InputPort(

 uflow.DynamicTensor(self.data_type, [self.dim_n], lambda n: [n]), size=[1])

 self.vec_c = uflow.OutputPort(

 uflow.DynamicTensor(self.data_type, [self.dim_m],

 lambda m: [m / self.par_m, m % self.par_m]), size=[1])

 def semantics(self):

 for m in self.dim_m:

 for n in self.dim_n:

 self.vec_c[m] += self.mat_a[m, n] * self.vec_b[n]

Register a IP “gemv”

IP data types

IP compile-time params

IP runtime params

IP input port “mat_a”

Shape and layout of “mat_a”

IP output port “vec_c”

Size 1 indicates “vec_c” is FIFO

IP semantics for pattern match

UFlow: Automated HLS IP Integration (Cont.)

PyTorch LinAlg on
Tensor

LinAlg on
Buffer

UIP

UBufBufferize

Res., Perf.
Model

C/C++

Tile IP Rewrite

HIDA
CodeGen

Auto-TuneIP Library

Dialect Pass

PyTorch Compiler for Versal

HIDA

HIDA Integration
● Integrated before CIRCT
● FPGA logic optimization
● FPGA-AIE communication

optimizationUFlow

UFlow Integration
● Take HLS and AIE IP library

registration as input
● Automatic HLS and AIE IPs

integration
● Inter-IP communication

optimization

Simultaneous HLS scheduling and datapath optimization

HLS
Scheduling

Operator-
level IR

RTL
Codegen

Behavior-
level RTL

Datapath
Optimization

[1]

Optimized
Behavior-
level RTL

Logic
Synthesis … …

1. Automatic Datapath Optimization using E-Graphs. Coward et al. DAC’23.

Applied on a timed and fixed design

HLS
Scheduling

Operator-
level IR

RTL
Codegen

Optimized
Behavior-
level RTL

Logic
Synthesis … …

Datapath
Optimization

Reinforce learning (RL) formulation

Thanks for your time!
Hanchen Ye

Oct. 18, 2023

