HIDA: Hierarchical Dataflow Compiler for High-Level Synthesis

Hanchen Ye, Hyegang Jun, Deming Chen Nov. 8, 2023

Outline

- ScaleHLS Recall
- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

Outline

• ScaleHLS Recall

- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

Recall: ScaleHLS Motivation

Recall: ScaleHLS Motivation (Cont.)

Recall: ScaleHLS Motivation (Cont.)

Recall: ScaleHLS Motivation (Cont.)

Difficulties:

- Low-productive and error-proning
- Hard to enable automated design space exploration (DSE)
- NOT scalable! 💢

Solve problems at the 'correct' level AND automate it MLIR

Approaches of ScaleHLS:

- Represent HLS designs at multiple levels of abstractions
- Make the *multi-level* optimizations automated and parameterized
- Enable an automated DSE
- End-to-end high-level analysis and optimization flow

Recall: ScaleHLS Framework

Polygeist: C/C++ frontend for MLIR. <u>https://github.com/wsmoses/Polygeist</u>
 Torch-MLIR: PyTorch frontend for MLIR: <u>https://github.com/llvm/torch-mlir</u>
 CIRCT: Circuit IR Compilers and Tools <u>https://github.com/llvm/circt</u>

Represent It!

Graph-level IR: TOSA, Linalg, and Tensor dialect.

Loop-level IR: Affine and Memref dialect. Can leverage the transformation and analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and Memref.

Optimize It!

Optimization Passes: Cover the graph, loop, and directive levels. Solve optimization problems at the 'correct' abstraction level.

QoR Estimator: Estimate the latency and resource utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized interfaces of all optimization passes and the QoR estimator. A playground of DSE. *statement*

Automated DSE Engine: Find the Pareto-frontier of the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS designs for downstream tools, such as Vivado HLS.

Outline

ScaleHLS Recall

- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

Motivation: Limitations of ScaleHLS DSE

Motivation: Limitations of ScaleHLS DSE (Cont.)

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Inter-kernel Correlation

- Node0 is connected to Node2 through buffer A
 - If buffer A is on-chip, the partition strategy of A is HIGHLY correlated with the parallel strategies of both Node0 and Node2
- Node1 is connected to Node2 through buffer B
 - Same as above

Connectedness

- Node0, 1, and 2 have different trip count: 32*16, 16*16, and 16*16*16
 - To enable efficient pipeline execution of Node0, 1, and 2, their latencies after parallelization should be similar

Intensity

Simply merging the local Pareto curves will not work well!

Motivation: Designing dataflow architecture is hard!

Manual LeNet Accelerator Design

- Layer fusion
 - Convolutional layer
 - ReLU layer
 - Max pooling layer
- Parallelization
 - Batch size
 - KPF (Kernel parallel factor)
 - CPF (Channel parallel factor)
- Layer fusion and parallelization decisions are made empirically
 - The resulting design space still has 24,000 design points

Layer	Task	Factor	Range			
(All Layers)	-	BATCH	$\{1, 5, 10, 15, 20\}$			
Conv+ReLU	Tack1	KDF .	1226L			
Pool	Taski	KI I task1	$\{1, 2, 3, 0\}$			
Conv+ReLU	Taslet	KPF _{task2}	$\{1, 2, 4, 8, 16\}$			
Pool	Taskz	CPF_{task2}	$\{1, 2, 3, 6\}$			
Conv+ReLU	Tack3	KPF _{task3}	$\{1, 2, 3, 4, 6, 8\}$			
	Tasky	CPF _{task3}	$\{1, 2, 4, 8, 16\}$			
Linear	Task4	-	-			

Motivation: Designing dataflow architecture is hard! (Cont.)

- Dataflow designs are Paretodominating
- Dataflow cannot guarantee a good trade-off
- Dataflow design space is difficult to comprehend
- Automated tool outperforms exhaustive search

	Expert	Exhaustive	HIDA	
Resource Util.	95.5%	99.2%	95.0%	
Throu. (Imgs/s)	41.6k	49.9k	53.2k	
Develop Cycle	40 hours	210 hours	9.9 mins	

Productivity Performance Scalability

Outline

- ScaleHLS Recall
- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

HIDA Framework

- **PyTorch** or **C/C++** as input
- Optimized **C++** dataflow design as output
- **MLIR-based** dataflow intermediate representation (IR), optimization, and code-generation

HIDA Intermediate Representation

Two-level dataflow representation

- Functional dataflow
 - Capture high-level dataflow characteristics
 - Efficient dataflow manipulation
- Structural dataflow
 - Capture low-level micro-architectures
 - Efficient scheduling and parallelization

HIDA Functional Dataflow

%tensor = hida.task() : tensor<64x64xi8> { ... }
hida.task() { ... %tensor ... }

Functional Dataflow

- Hierarchical structure
 - Support multiple levels of dataflow
 - Inside of Task6, the tile load, computation, and store are further dataflowed
- Transparent from above
 - All tasks share the same global context
 - Support efficient task fusion and splitting

HIDA Structural Dataflow

%buffer = hida.buffer : memref<64x64xi8, ...> hida.node() -> (%buffer : memref<64x64xi8, ...>) { ... } hida.node(%buffer : memref<64x64xi8, ...>) -> () { ... }

Structural Dataflow

- Explicit buffer representation
 - Support both memory-mapped and stream buffers
- Isolated from above
 - Each node has its own context
 - Decouple inter-node and intra-node dataflow optimization

HIDA Structural Dataflow (Cont.)

* buffer, stream, and node operation syntax in structural dataflow. RO and RW denote read-only and read-write.

- Multi-stage buffer representation
 - Support complicated schedulings, e.g., multi-line buffer
- Affine-based partition, tiling, and vectorization representation
 - Support automatic buffer optimization upon affine analyses
- Explicit buffer memory effect representation
 - Avoid unnecessary inter-node analysis

Integration with MLIR Dialects

Outline

- ScaleHLS Recall
- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

Buffer inside of the context

Buffer inside of the context

Buffer inside of the context

Buffer outside of the context

Buffer inside of the context

Buffer outside of the context

Data Paths Balancing

Data Paths Balancing

On-chip balancing

Data Paths Balancing

On-chip balancing

Off-chip balancing

HIDA Design Space Exploration

Step (1) Connectedness Analysis

Source	Targat	Duffor	Permuta	tion Map	Scaling Map		
Source	Target	Duilei	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	A	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

• Permutation Map

• Record the alignment between loops

Step (1) Connectedness Analysis

Source	Targat	Buffor	Permuta	tion Map	Scaling Map		
Source	Target	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, ∅, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

• Permutation Map

• Record the alignment between loops

Scaling Map

• Record the alignment between strides

Affine Analysis-based

• Demand preprocessing: Loop normalize and perfectize, memory canonicalize

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][i] = \dots; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Step (2) Node Sorting

Node	Connectedness	Intensity
Node0	1	512
Node1	1	256
Node2	2	4096

Descending Order of Connectedness

- Higher-connectedness node will affect more nodes
- Intensity as Tie-breaker
 - Higher-intensity nodes are more computationally complex, being more sensitive to optimization
- Order: Node2 -> Node0 -> Node1

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
    NODE1_J: for (int i=0; i<16; i++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
 - Overall parallel factor is 32
 - ScaleHLS DSE without constraints
 - Solution unroll factors: [4, 8, 1]

Source	Target	Buffor	Permutat	tion Map	Scaling Map		
	Target	Dunei	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	$[2, \emptyset, 1]$	
Node1	Node2	B	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	[0, 1, 1]	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
 - Overall parallel factor is 4, calculated from intensities of Node0 and 2 (32*512/4096)
 - ScaleHLS DSE with connectedness constraints, the unroll factors must NOT be mutually indivisible with constraints
 - Multiply with scaling map:
 - [4, 8, 1] [2, ∅, 1] = [8, ∅, 1]
 - Permute with permutation map:
 - permute([8, ∅, 1], [0, 2] = [8, 1]
 - Solution unroll factors: [4, 1]

Source	Targat	Buffor	Permuta	tion Map	Scaling Map		
Source	Target	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	A	[0, Ø, 1]	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	[Ø, 1, 1]	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
- Node1 Parallelization: [1, 2]
 - Overall parallel factor is 2, calculated from intensities of Node0 and 1 (32*256/4096)
 - ScaleHLS DSE with connectedness constraints
 - Solution unroll factors: [1, 2]

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
    NODE1_J: for (int i=0; i<16; i++)
8
      B[k][i] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```


ResNet-18 Ablation Study on HIDA

ResNet-18 Ablation Study on HIDA (Cont.)

Outline

- ScaleHLS Recall
- Motivation
- HIDA Intermediate Representation
- HIDA Optimizations
- Evaluation Results
- Conclusion

HIDA Results on DNN Models

Vormal	HIDA	LUT	FF	DSP	Throughput (Samples/s)*				
Kerner	Time (s)	Number	Number	Number	HIDA	ScaleHLS [70]	SOFF [37]	Vitis [34]	
2mm	0.65	38.8k	27.4k	269	239.22	122.39 (1.95×)	30.67 (7.80×)	1.23 (194.88×)	
3mm	0.79	38.7k	27.8k	243	175.43	92.33 (1.90×)	-	1.04 (167.99×)	
atax	2.06	44.6k	34.6k	260	1,021.39	932.26 (1.10×)	2,173.17 (0.47×)	103.18 (9.90×)	
bicg	0.72	16.0k	15.1k	61	2,869.69	2,869.61 (1.00×)	2,295.75 (1.25×)	104.19 (27.54×)	
correlation	0.91	14.5k	12.3k	66	67.33	59.77 (1.13×)	3.96 (16.99×)	1.32 (50.97×)	
gesummv	0.60	34.2k	22.8k	232	31,685.68	31,685.68 (1.00×)	3,466.70 (9.14×)	266.65 (118.83×)	
jacobi-2d	1.98	91.4k	56.6k	352	257.27	257.27 128.63 (2.00×) - 2.		2.71 (94.95×)	
mvt	0.42	23.8k	16.5k	162	9,979.04	9,979.04 4,989.02 (2.00×) 870.01 (11.47×) 62.13 (1			
seidel-2d	3.59	5.5k	2.5k	4	0.14	0.14 (1.00×)	-	0.11 (1.28×)	
symm	1.05	14.9k	9.5k	74	2.62	2.62 (1.00×)	-	2.02 (1.29×)	
syr2k	0.69	14.3k	12.8k	78	27.68	27.68 27.67 (1.00×) -		1.44 (19.23×)	
Geo. Mean	0.99					1.29×	4.49 ×	31.08 ×	

* Numbers in () show throughput improvements of HIDA over others.

HIDA Results on DNN Models

	HIDA	IUT	DSP	Tł	nroughput (San	nples/s)*		DSP Efficien	ıc	y *
Model Compile Num Time (s)	Number	Number	HIDA	DNNBuilder [75]	ScaleHLS [68]	HIDA	DNNBuilder [75]		ScaleHLS [68]	
ResNet-18	83.1	142.1k	667	45.4	-	3.3 (13.88×)	73.8%	-		5.2% (14.24×)
MobileNet	110.8	132.9k	518	137.4	-	15.4 (8.90×)	75.5%	-		9.6% (7.88×)
ZFNet	116.2	103.8k	639	90.4	112.2 (0.81×)	-	82.8%	79.7% (1.04×)		-
VGG-16	199.9	266.2k	1118	48.3	27.7 (1.74×)	6.9 (6.99×)	102.1%	96.2% (1.06×)		18.6% (5.49×)
YOLO	188.2	202.8k	904	33.7	22.1 (1.52×)	_	94.3%	86.0% (1.10×)		-
MLP	40.9	21.0k	164	938.9	-	152.6 (6.15×)	90.0%	-		17.6% (5.10×)
Geo. Mean	108.7				1.29×	8.54×		1.07×		7.49×

* Numbers in () show throughput/DSP efficiency improvements of HIDA over others.

Conclusion

HIDA GitHub Repository
<u>https://github.com/UIUC-ChenLab/ScaleHLS-HIDA</u>

- We propose a two-level dataflow intermediate representation, Functional and Structural dataflow, to capture the dataflow characteristics
- We propose a dataflow optimizer for efficient dataflow optimization and parallelization
- We demonstrate 8.54x and 1.29x higher throughputs over the SOTA HLS optimization framework and RTL-based neural networks accelerator