
ECE527 Lecture 14
MLIR, ScaleHLS, and HIDA

Hanchen Ye, Oct. 5

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

● Reduce design complexity: Code density can be reduced by 7x - 8x moving from RTL to C/C++ [1]

● Improve design productivity: Get to working designs faster and reduce time-to-market [2]

● Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [3]

[1] P. Coussy, et al. High-Level Synthesis: from Algorithm to Digital Circuit. 2008. Springer.
[2] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.
[3] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.
[4] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators. 2010. ArXiv.
[5] M. Yu. Chimera: An Efficient Design Space Exploration Tool for FPGA High-level Synthesis. 2021. Master thesis.

High-level Synthesis (HLS) is wonderful!

Design HLS accelerator is challenging 👿

● Friendly to experts: Rely on the designers writing ‘good’ code to achieve high design quality [4]

● Large design space: Different combinations of applicable optimizations for large-scale designs [3]

● Correlation of design factors: It is difficult for human to discover the complicated correlations [5]

Motivations
High-level

Description
(e.g. C/C++) Scheduling Allocation Binding

RTL Design
(e.g. Verilog)

High-level Synthesis (HLS)

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

How do we do HLS
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (cont.) - Directive Optimizations

Generate RTL with and etc.

Pipeline II is 5 and overall latency is 183,296

How do we do HLS
designs?

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Motivations (cont.) - Loop Optimizations

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

MatMul

Sample

CONV

Input

MatMul

IP

Input

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Motivations (cont.) - Graph Optimizations

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

How do we do HLS
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple

levels of abstractions

● Make the multi-level optimizations
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and
optimization flow

Solve problems at
the ‘correct’ level
AND automate it

Manual Code RewritingMatMul

Sample

CONV

Input

MatMul

IP

Input

Motivations (cont.) - Overall

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.

Generate RTL with and etc.

Pipeline II is 2 and overall latency is 65,552

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

Source: The architecture of open-source applications, C. Lattner.

● LLVM uses the same intermediate representation (IR) to represent ALL programs.
● All program optimizations are based on the LLVM IR.
● LLVM dispatches the front-ends, optimizations, and back-ends. O(m*n) -> O(1)

LLVM: Compiler Infrastructure

Source: The Golden Age of Compiler Design in an Era of HW/SW Co-design, C. Lattner.

LLVM: Compiler Infrastructure (Cont’d)

Source: Introduction to LLVM, UG3 Compiling Techniques.

LLVM: Compiler Infrastructure (Cont’d)

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.

● More and more programming languages demand customized IR for optimization.
● The IR for different languages have different abstraction level.
● Language-specific IR can be lowered to LLVM for back-end code generation.

LLVM IR ...

Swift SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ... CIR IR

Fortran FIR IRFlang AST

From LLVM to MLIR

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

● Different back-ends demand customized IR for optimization
● DSAs (Domain-Specific Accelerator) even cannot use LLVM for generating

back-end codes and demand their own IR for code generation

LLVM IR ...

Swift Swift AST

Rust Rust AST

Julia Julia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ...

Fortran Flang AST

ROCm

AVX

SPIR-V

NVVM
SIL IR

MIR IR

Julia IR

 CIR IR

FIR IR

💣

Severe Fragmentation: IRs have different implementations and “frameworks”

DSA-
Specific IR

...

From LLVM to MLIR (Cont’d)
NVVM: IR for Nvidia GPU

ROCm: IR for AMD GPU

AVX: IR for Intel vector extension

SPIR-V: Standard Portable IR for parallel compilation

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

● Multi-Level Intermediate Representation
● State of the art compiler technology
● Built on top of LLVM’s open and library-based philosophy
● Modular and extensible
● Originally created within Google for compiling TensorFlow
● Sufficiently general to compile lots of domains

https://mlir.llvm.org

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

MLIR: Compiler Infrastructure for the End of Moore’s Law

https://mlir.llvm.org

Module

Operation

Region

func.func @testFunction(%arg0: i32) -> i32 {
 %a = func.call @thingToCall(%arg0) : (i32) -> i32
 cf.br ^bb1
^bb1:
 %c = affine.for %i = 0 to 10 iter_args(%b = %a) -> i32 {
 %i_i32 = arith.index_cast %i : index to i32
 %b_new = arith.addi %i_i32, %b : i32
 affine.yield %b_new : i32
 }
 func.return %c : i32
}

Block

Operation

Block

Operation

Operation

● SSA-based IR design, explicit typing system
● Module/Operation/Region/Block/Operation hierarchy
● Operation can contain multiple Regions

Region
… …

A C++ namespace that contains customized
operations, types, and attributes. Implement
the “correct” abstraction for your domain.

Dialect

Syntax of MLIR

LLVM Dialect ...

Swift Swift AST

Rust Rust AST

Julia Julia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ...

Fortran Flang AST

ROCm Dialect

AVX Dialect

SPIR-V Dialect

NVVM Dialect

SIL Dialect

MIR Dialect

Julia Dialect

CIR Dialect

FIR Dialect

💣

...

MLIR

DSA-Specific
Dialect

● Design and implement dialect
● Optimization and transform inside of a dialect
● Conversion between different dialects
● Code generation of dialect

MLIR is a “Meta IR” and
compiler infrastructure for:

MLIR: “Meta IR” and Compiler Infrastructure

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

MLIR: “Meta IR” and Compiler Infrastructure (Cont’d)

Arith
+

Vector

TOSA

LinAlg

Affine

Tensor

SCF

CF

LLVM

Func

Arith

Structure Control
Flow Payload Semantics

Tensor

Buffer

Lowering

MemRef

PyTorch

C/C++

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

ScaleHLS Framework: Integration

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Integration (Cont’d)
Inputs

C/C++ Polygeist [1]

PyTorch Torch-MLIR [2]

Outputs

C/C++ C/C++ Emitter

Verilog CIRCT [3]

(work-in-progress)

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Representation

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = affine.load %W[%r, %s, %c, %k] : memref<3x3x3x64xi8>
 %o = affine.load %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 %mul = arith.muli %i, %w : i8
 %add = arith.addi %o, %mul : i8
 affine.store %add, %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 }
 }
 }
 }
 }
} Conv2D Loop-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

ScaleHLS Framework: Representation (Cont’d)

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 step 2 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = vector.transfer_read %W[%r, %s, %c, %k], : memref<3x3x3x64xi8>, vector<2xi8>

 %mul = "hlscpp.mul_prim"(%i, %w) : (i8, vector<2xi8>) -> vector<2xi16>

 %mul32 = "hlscpp.cast_prim"(%mul) : (vector<2xi16>) -> vector<2xi32>

 } {loop_directive = #hlscpp.ld<pipeline=true, targetII=1, ...}
 }
 }
 }
 }
} Conv2D Directive-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

ScaleHLS Framework: Optimization

Level ScaleHLS Passes

Graph
-simplify-tosa-graph

-legalize-dataflow

-split-function

Loop

-affine-loop-perfectization

-remove-variable-bound

-affine-loop-tile

-affine-loop-order-opt

-affine-loop-unroll-jam

-simplify-affine-if

-affine-store-forward

-simplify-memref-access

Directive

-loop-pipelining

-function-pipelining

-array-partition

-create-hlscpp-primitive

-qor-estimation

HLS QoR
Estimator

Represent It!

Graph-level IR: TOSA, Linalg, and Tensor dialect.

Loop-level IR: Affine and Memref dialect. Can
leverage the transformation and analysis libraries
applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and Memref.

Optimize It!

Optimization Passes: Cover the graph, loop, and
directive levels. Solve optimization problems at the
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized
interfaces of all optimization passes and the QoR
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS
designs for downstream tools, such as Vivado HLS.

ScaleHLS Framework

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

ScaleHLS Optimizations

Coarse-grained
Pipelining

(dataflow pragma)

-legalize-dataflow
-split-function

-legalize-dataflow=”insert-copy=true”
-split-function

-legalize-dataflow=“insert-copy=true”
-split-function=“min-grain=2”

Enable a graph-level
throughput-area trade-off

ScaleHLS Optimizations (Cont.)

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

ScaleHLS Optimizations (Cont.)
Loop Order Permutation

● The minimum 𝐼𝐼 (Initiation Interval) of a loop pipeline can
be calculated as:

● 𝐷𝑒𝑙𝑎𝑦𝑑 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑 are the scheduling delay and
distance (calculated from the dependency vector) of
each loop-carried dependency 𝑑.

● To achieve a smaller 𝐼𝐼, the loop order permutation pass
performs affine analysis and attempt to permute loops
associated with loop-carried dependencies in order to
maximize the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

ScaleHLS Optimizations (Cont.)
Loop Pipelining

● Apply loop pipelining directives to a loop and set a
targeted initiation interval.

● In the IR of ScaleHLS, directives are represented using
the HLSCpp dialect. In the example, the pipelined %j
loop is represented as:

 affine.for %j = 0 to 32 {

 … …

 } attributes {loop_directive = #hlscpp.ld<pipeline=1,

 targetII=3, dataflow=0, flatten=0, … … >}

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

ScaleHLS Optimizations (Cont.)
Array Partition

● Array partition is one of the most important directives
because the memories requires enough bandwidth to
comply with the computation parallelism.

● The array partition pass analyzes the accessing pattern
of each array and automatically select suitable partition
fashion and factor.

● In the example, the %A array is accessed at address
[i,k] and [i,k+1] simultaneously after pipelined,
thus %A array is cyclically partitioned with two.

Simplify if ops;
Store ops forward;
Simplify memref ops

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
} } } } }

Optimized C
emitted by the
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

ScaleHLS Optimizations (Cont.)
Transform and Analysis Library

● Apart from the optimizations, ScaleHLS provides a QoR
estimator based on an ALAP scheduling algorithm. The
memory ports are considered as non-shareable
resources and constrained in the scheduling.

● The interfaces of all optimization passes and the QoR
estimator are packaged into a library, which can be
called by the DSE engine to generate and evaluate
design points.

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

Design Space Exploration - Observation

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Pareto frontier of a GEMM kernel
● Latency and area are profiled for each design point

● Dark blue points are Pareto points

● Loop perfectization, loop order permutation, loop
tiling, loop pipelining, and array partition passes are
involved

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

DSE algorithm:
1. Sample the whole design space and evaluate each

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design
points

3. Evaluate the closest neighbor of a randomly
selected design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered
Pareto frontier

5. Stop when no eligible neighbor can be found or
meeting the early-termination criteria

● Each parameter of a pass becomes one dimension, the
original 4-dimensional design space is reduced to two
dimensions through PCA

● Pareto points are located at a corner of the design
space, the variance of Pareto points is much smaller
than the overall variance

Given the Transform and Analysis Library provided by
ScaleHLS, the DSE engine can be extended to support
other optimization algorithms in the future.

We have an ‘estimated’
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated

Design Space Exploration (Cont.)

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

DSE Results of Computation Kernel

DSE results of PolyBench-C computation kernels
1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and

53,200 LUTs. The data types of all kernels are single-precision floating-points.

2. Among all six benchmarks, a speedup ranging from 41.7× to 768.1× is obtained compared to the baseline
design, which is the original computation kernel from PolyBench-C without the optimization of DSE.

3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.

4. In the Loop Order Optimization (Perm. Map), the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝 [𝑖],
where locations are from the outermost loop to inner.

Scalability study of computation kernels
1. The problem sizes of computation kernels are scaled from 32 to 4096 and the DSE engine is launched to

search for the optimal solutions under each problem size.

2. For BICG, GEMM, SYR2K, and SYRK benchmarks, the DSE engine can achieve stable speedup under all
problem sizes.

3. For GESUMMV and TRMM, the speedups are limited by the small problem sizes.

DSE Results of Computation Kernel (Cont.)

Optimization Results of DNN Models

Optimization results of representative DNN models
1. The target platform is one SLR (super logic region) of Xilinx VU9P FPGA which is a large FPGA containing

115.3 Mb memories, 2280 DSPs and 394,080 LUTs on each SLR.

2. The PyTorch implementations are parsed into ScaleHLS and optimized using the proposed multi-level
optimization methodology.

3. By combining the graph, loop, and directive levels of optimization, a speedup ranging from 1505.3× to 3825.0×
is obtained compared to the baseline designs, which are compiled from PyTorch to HLS C/C++ through
ScaleHLS but without the multi-level optimization applied.

Ablation study of DNN models
1. 𝐷, 𝐿{𝑛}, and 𝐺{𝑛} denote directive, loop, and graph optimizations, respectively. Larger 𝑛 indicates larger loop

unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

2. We can observe that the directive (𝐷), loop (𝐿7), and graph (𝐺7) optimizations contribute 1.8×, 130.9×, and 10.3
× average speedups on the three DNN benchmarks, respectively.

Optimization Results of DNN Models (Cont.)

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● HIDA (ScaleHLS 2.0)

● Conclusion

Limitation of ScaleHLS

Graph
Optimizations

MatMul

Sample

CONV

Input

MatMul

IP

Input

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j < 32; j++) {
 if (k == 0)
 C[i][j] *= beta;
 C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
Optimizations

Directive
Optimizations

Band0

Pareto
Merge
Iter. 0

Band1

Band2

Band4

Band3 Pareto
Merge
Iter. 1

Call Graph

Step (1) Local single-kernel loop and directive DSE

Step (2) Global multi-kernel Pareto curving merging

Limitation of ScaleHLS (Cont’d)

Inter-kernel Correlation

● Node0 is connected to Node2 through buffer A
○ If buffer A is on-chip, the partition strategy

of A is HIGHLY correlated with the parallel
strategies of both Node0 and Node2

● Node1 is connected to Node2 through buffer B
○ Same as above

● Node0, 1, and 2 have different trip count: 32*16,
16*16, and 16*16*16

○ To enable efficient pipeline execution of
Node0, 1, and 2, their latencies after
parallelization should be similar

Simply merging the local Pareto curves will not work well!

Connectedness

Intensity

What we did in HIDA

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

0

1
∅

0
2

What we did in HIDA (Cont’d)

Step (1) Connectedness Analysis

● Permutation Map
○ Record the alignment between loops

● Scaling Map
○ Record the alignment between strides

● Affine Analysis-based
○ Demand preprocessing: Loop normalize

and perfectize, memory canonicalize

∅
1

0.5
1

2

What we did in HIDA (Cont’d)

Step (2) Node Sorting

Node Connectedness Intensity
Node0 1 512

Node1 1 256

Node2 2 4096

● Descending Order of Connectedness
○ Higher-connectedness node will affect

more nodes

● Intensity as Tie-breaker
○ Higher-intensity nodes are more

computationally complex, being more
sensitive to optimization

● Order: Node2 -> Node0 -> Node1

What we did in HIDA (Cont’d)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]
○ Overall parallel factor is 32
○ ScaleHLS DSE without constraints
○ Solution unroll factors: [4, 8, 1]

What we did in HIDA (Cont’d)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]
○ Overall parallel factor is 4, calculated from

intensities of Node0 and 2 (32*512/4096)
○ ScaleHLS DSE with connectedness

constraints, the unroll factors must NOT
be mutually indivisible with constraints

■ Multiply with scaling map:
■ [4, 8, 1] ⊙ [2, ∅, 1] = [8, ∅, 1]
■ Permute with permutation map:
■ permute([8, ∅, 1], [0, 2] = [8, 1]

○ Solution unroll factors: [4, 1]

What we did in HIDA (Cont’d)

Step (3) Node Parallelization

● Assuming maximum parallel factor is 32

● Node2 Parallelization: [4, 8, 1]

● Node0 Parallelization: [4, 1]

● Node1 Parallelization: [1, 2]
○ Overall parallel factor is 2, calculated from

intensities of Node0 and 1 (32*256/4096)
○ ScaleHLS DSE with connectedness

constraints
○ Solution unroll factors: [1, 2]

What we did in HIDA (Cont’d)

Step (3) Node Parallelization

Intensity-aware (IA)
Connectedness-aware (CA)

HIDA DSE

Naive
ScaleHLS

DSE

8x
8x
1x

ResNet-18 Ablation Study on HIDA

(a)

3.7X

(b)

1.2X

(c)

44.3X

● IA+CA parallelization can determine
whether the solution is scalable

ResNet-18 Ablation Study on HIDA (Cont’d)

(a)

4.5X

(b)

4.7X

(c)

1.0X

● IA+CA parallelization can determine
whether the solution is scalable

● IA+CA parallelization can significantly
reduce resource utilization

Intermediate Representation of HIDA

● PyTorch or C/C++ as input

● Optimized C++ dataflow design as output

● Two-level dataflow representation
○ Functional dataflow
○ Structural dataflow

● Decoupled functional and structural
dataflow optimization

HIDA Results on DNN Models

On-board evaluations are in progress

Outline
● Motivations

● Background: MLIR

● ScaleHLS Framework

● ScaleHLS Optimizations

● Design Space Exploration

● Evaluation Results

● Future Directions

● Conclusion

ScaleHLS is Open-Sourced!

For HLS Researchers

1. Rapidly implement new HLS optimization algorithms on top of the multi-level IR

2. Investigate new DSE algorithms using the transform and analysis library

3. Rapidly build an end-to-end HLS optimization flow and demonstrate your awesome works!

For HLS Users

1. Optimize HLS designs using the multi-level optimization passes

2. Avoid premature design choices by using the QoR estimator to estimate the latency and utilization

3. Find optimized HLS designs with the automated DSE engine

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

Conclusion

1. We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level representation
and optimization of HLS designs and supports a transform and analysis library dedicated for HLS.

2. ScaleHLS enables an end-to-end compilation pipeline supporting both C/C++ and PyTorch as input.

3. An automated and extensible DSE engine is developed to search for optimal solutions in the
multi-dimensional design spaces.

4. Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale and
sophisticated HLS designs and achieves significant performance and productivity improvements on a set of
benchmarks.

Readings (Attached in Materials)

1. Ye, Hanchen, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen Neuendorffer, and Deming
Chen. "ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate
Representation." In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), 2022.

2. Ye, Hanchen, Jun, Hyegang, and Chen, Deming. "HIDA: A Hierarchical Dataflow Compiler for High-Level
Synthesis." In 2024 ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2024.

3. Lattner, Chris, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle,
Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. "MLIR: Scaling compiler infrastructure for
domain specific computation." In 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2021.

Thanks! Q&A
Hanchen Ye, Oct. 5

Appendix
PyTorch Compilation Walkthrough in MLIR

ML Model Compilation: PyTorch to Torch Dialect
class Linear(nn.Module):
 def __init__(self):
 super(Linear, self).__init__()
 self.linear = nn.Linear(16, 10)

 def forward(self, x):
 return self.linear(x)

linear = Linear()
mlir_module = torch_mlir.compile(linear, torch.ones(
 1, 16), output_type=torch_mlir.OutputType.TORCH)

func.func @forward(%arg0: !torch.vtensor<[1,16],f32>) -> !torch.vtensor<[1,10],f32> {
 %0 = torch.vtensor.literal(dense<"0xA270..."> : tensor<10xf32>) : !torch.vtensor<[10],f32>
 %1 = torch.vtensor.literal(dense<"0x5CE5..."> : tensor<10x16xf32>) : !torch.vtensor<[10,16],f32>
 %2 = torch.aten.linear %arg0, %1, %0 : !torch.vtensor<[1,16],f32>, !torch.vtensor<[10,16],f32>,
!torch.vtensor<[10],f32> -> !torch.vtensor<[1,10],f32>
 return %2 : !torch.vtensor<[1,10],f32>
}

PyTorch Model

Torch Dialect

Torch-MLIR Front-end

Torch Dialect
● Front-end dialect designed for interfacing

PyTorch and MLIR.
● This dialect maintains a fairly isomorphic

representation with TorchScript.
● Operates on tensor objects with static

ranks inferred where possible and
propagated throughout the program.

Source: Torch-MLIR https://github.com/llvm/torch-mlir

https://github.com/llvm/torch-mlir

ML Model Compilation: Torch to TOSA

TOSA (Tensor Operators Set Architecture) Dialect
● A front-end and back-end agnostic dialect representing a minimal and stable set of tensor-level

operations commonly employed by Machine Learning frameworks.
● Detailed functional and numerical description enabling precise code construction for a diverse range

of targets – SIMD CPUs, GPUs and custom domain-specific accelerators.

Source: Torch-MLIR https://github.com/llvm/torch-mlir

Torch to TOSA Lowering

func.func @forward(%arg0: tensor<1x16xf32>) -> tensor<1x10xf32> {
 %0 = "tosa.const"() {value = dense<"0xC44B..."> : tensor<1x16x10xf32>} : () -> tensor<1x16x10xf32>
 %1 = "tosa.const"() {value = dense<"0xA270..."> : tensor<1x10xf32>} : () -> tensor<1x10xf32>
 %2 = "tosa.reshape"(%arg0) {new_shape = [1, 1, 16]} : (tensor<1x16xf32>) -> tensor<1x1x16xf32>
 %3 = "tosa.matmul"(%2, %0) : (tensor<1x1x16xf32>, tensor<1x16x10xf32>) -> tensor<1x1x10xf32>
 %4 = "tosa.reshape"(%3) {new_shape = [1, 10]} : (tensor<1x1x10xf32>) -> tensor<1x10xf32>
 %5 = "tosa.add"(%4, %1) : (tensor<1x10xf32>, tensor<1x10xf32>) -> tensor<1x10xf32>
 return %5 : tensor<1x10xf32>
} Torch Dialect

https://github.com/llvm/torch-mlir

ML Model Compilation: TOSA to Linalg on Tensors

Linalg (Linear Algebra) Dialect
● High-level and structured representation of linear algebra operators
● Designed for driving transformations including buffer allocation, parametric tiling, vectorization, etc.

TOSA to Linalg Lowering

#map0 = affine_map<(d0, d1, d2) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d2, d1)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1)>
func.func @forward(%arg0: tensor<1x16xf32>) -> tensor<1x10xf32> {
 %cst = arith.constant dense<"0xA270..."> : tensor<1x10xf32>
 %cst_0 = arith.constant dense<"0xC44B..."> : tensor<16x10xf32>
 %0 = linalg.generic {indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0, %cst_0 : tensor<1x16xf32>, tensor<16x10xf32>) outs(%cst : tensor<1x10xf32>) {
 ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
 %1 = arith.mulf %arg1, %arg2 : f32
 %2 = arith.addf %arg3, %1 : f32
 linalg.yield %2 : f32
 } -> tensor<1x10xf32>
 return %0 : tensor<1x10xf32>
} Tensor + Arith + Linalg Dialects

ML Model Compilation: Bufferization
Func, Arith, and Linalg Bufferization

#map0 = affine_map<(d0, d1, d2) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d2, d1)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1)>
memref.global "private" constant @__constant_16x10xf32 : memref<16x10xf32> = dense<"0xC44B...">
memref.global "private" constant @__constant_1x10xf32 : memref<1x10xf32> = dense<"0xA270...">
func.func @forward(%arg0: memref<1x16xf32>, %arg1: memref<1x10xf32>) {
 %0 = memref.get_global @__constant_1x10xf32 : memref<1x10xf32>
 %2 = memref.get_global @__constant_16x10xf32 : memref<16x10xf32>
 memref.copy %0, %arg1 : memref<1x10xf32> to memref<1x10xf32>
 linalg.generic {indexing_maps = [#map0, #map1, #map2], iterator_types = ["parallel", "parallel", "reduction"]}
ins(%arg0, %2 : memref<1x16xf32>, memref<16x10xf32>) outs(%arg1 : memref<1x10xf32>) {
 ^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
 %3 = arith.mulf %arg2, %arg3 : f32
 %4 = arith.addf %arg4, %3 : f32
 linalg.yield %4 : f32
 }
 return
} Memref + Arith + Linalg Dialects

ML Model Compilation: Linalg to Affine
Linalg to Affine Lowering

memref.global "private" constant @__constant_16x10xf32 : memref<16x10xf32> = dense<"0xC44B...">
memref.global "private" constant @__constant_1x10xf32 : memref<1x10xf32> = dense<"0xA270...">
func.func @forward(%arg0: memref<1x16xf32>, %arg1: memref<1x10xf32>) {
 %0 = memref.get_global @__constant_1x10xf32 : memref<1x10xf32>
 %1 = memref.get_global @__constant_16x10xf32 : memref<16x10xf32>
 memref.copy %0, %arg1 : memref<1x10xf32> to memref<1x10xf32>
 affine.for %arg2 = 0 to 10 {
 affine.for %arg3 = 0 to 16 {
 %2 = affine.load %arg0[0, %arg3] : memref<1x16xf32>
 %3 = affine.load %1[%arg3, %arg2] : memref<16x10xf32>
 %4 = affine.load %arg1[0, %arg2] : memref<1x10xf32>
 %5 = arith.mulf %2, %3 : f32
 %6 = arith.addf %4, %5 : f32
 affine.store %6, %arg1[0, %arg2] : memref<1x10xf32>
 }
 }
 return
} Memref + Arith + Affine Dialects

Affine Dialect
Designed for using techniques
from polyhedral compilation to
make dependence analysis
and loop transformations
efficient and reliable.

ML Model Compilation: Affine-level Vectorization
Affine Super Vectorization

#map = affine_map<(d0, d1) -> (0)>
memref.global "private" constant @__constant_16x10xf32 : memref<16x10xf32> = dense<"0xC44B...">
memref.global "private" constant @__constant_1x10xf32 : memref<1x10xf32> = dense<"0xA270...">
func.func @forward(%arg0: memref<1x16xf32>, %arg1: memref<1x10xf32>) {
 %c0 = arith.constant 0 : index
 %cst = arith.constant 0.000000e+00 : f32
 %0 = memref.get_global @__constant_1x10xf32 : memref<1x10xf32>
 %1 = memref.get_global @__constant_16x10xf32 : memref<16x10xf32>
 memref.copy %0, %arg1 : memref<1x10xf32> to memref<1x10xf32>
 affine.for %arg2 = 0 to 10 step 2 {
 affine.for %arg3 = 0 to 16 {
 %2 = vector.transfer_read %arg0[%c0, %arg3], %cst {permutation_map = #map} : memref<1x16xf32>, vector<2xf32>
 %3 = vector.transfer_read %1[%arg3, %arg2], %cst : memref<16x10xf32>, vector<2xf32>
 %4 = vector.transfer_read %arg1[%c0, %arg2], %cst : memref<1x10xf32>, vector<2xf32>
 %5 = arith.mulf %2, %3 : vector<2xf32>
 %6 = arith.addf %4, %5 : vector<2xf32>
 vector.transfer_write %6, %arg1[%c0, %arg2] : vector<2xf32>, memref<1x10xf32>
 }
 }
 return
} Memref + Vector + Arith + Affine Dialects

ML Model Compilation: Affine to SCF
Affine to SCF Lowering

#map = affine_map<(d0, d1) -> (0)>
memref.global "private" constant @__constant_16x10xf32 : memref<16x10xf32> = dense<"0xC44B...">
memref.global "private" constant @__constant_1x10xf32 : memref<1x10xf32> = dense<"0xA270...">
func.func @forward(%arg0: memref<1x16xf32>, %arg1: memref<1x10xf32>) {
 %c1 = arith.constant 1 : index %c16 = arith.constant 16 : index %c2 = arith.constant 2 : index
 %c10 = arith.constant 10 : index %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32
 %0 = memref.get_global @__constant_1x10xf32 : memref<1x10xf32>
 %1 = memref.get_global @__constant_16x10xf32 : memref<16x10xf32>
 memref.copy %0, %arg1 : memref<1x10xf32> to memref<1x10xf32>
 scf.for %arg2 = %c0 to %c10 step %c2 {
 scf.for %arg3 = %c0 to %c16 step %c1 {
 %2 = vector.transfer_read %arg0[%c0, %arg3], %cst {permutation_map = #map} : memref<1x16xf32>, vector<2xf32>
 %3 = vector.transfer_read %1[%arg3, %arg2], %cst : memref<16x10xf32>, vector<2xf32>
 %4 = vector.transfer_read %arg1[%c0, %arg2], %cst : memref<1x10xf32>, vector<2xf32>
 %5 = arith.mulf %2, %3 : vector<2xf32>
 %6 = arith.addf %4, %5 : vector<2xf32>
 vector.transfer_write %6, %arg1[%c0, %arg2] : vector<2xf32>, memref<1x10xf32>
 }
 }
 return
} Memref + Vector + Arith + SCF Dialects

SCF Dialect
Represents
structured
control flow.

ML Model Compilation: SCF to CF (Control Flow)
SCF to CF Lowering

^bb1(%2: index): // 2 preds: ^bb0, ^bb4
 %3 = arith.cmpi slt, %2, %c10 : index
 cf.cond_br %3, ^bb2(%c0 : index), ^bb5
^bb2(%4: index): // 2 preds: ^bb1, ^bb3
 %5 = arith.cmpi slt, %4, %c16 : index
 cf.cond_br %5, ^bb3, ^bb4
^bb3: // pred: ^bb2
 %6 = vector.transfer_read %arg0[%c0, %4], %cst {permutation_map = #map} : memref<1x16xf32>, vector<2xf32>
 %7 = vector.transfer_read %1[%4, %2], %cst : memref<16x10xf32>, vector<2xf32>
 %8 = vector.transfer_read %arg1[%c0, %2], %cst : memref<1x10xf32>, vector<2xf32>
 %9 = arith.mulf %6, %7 : vector<2xf32>
 %10 = arith.addf %8, %9 : vector<2xf32>
 vector.transfer_write %10, %arg1[%c0, %2] : vector<2xf32>, memref<1x10xf32>
 %11 = arith.addi %4, %c1 : index
 cf.br ^bb2(%11 : index)
^bb4: // pred: ^bb2
 %12 = arith.addi %2, %c2 : index
 cf.br ^bb1(%12 : index)
^bb5: // pred: ^bb1
 return
} Memref + Vector + Arith + CF Dialects

ML Model Compilation: Lower to LLVM
Memref, Vector, Arith, and CF to LLVM Lowering

^bb1(%20: i64): // 2 preds: ^bb0, ^bb4
 %21 = llvm.icmp "slt" %20, %5 : i64
 llvm.cond_br %21, ^bb2(%4 : i64), ^bb5
^bb2(%22: i64): // 2 preds: ^bb1, ^bb3
 %23 = llvm.icmp "slt" %22, %7 : i64
 llvm.cond_br %23, ^bb3, ^bb4
^bb3: // pred: ^bb2

 %46 = llvm.intr.masked.load %45, %36, %0 {alignment = 4 : i32} : (!llvm.ptr<vector<2xf32>>, vector<2xi1>, vector<2xf32>)
-> vector<2xf32>
 %47 = llvm.fmul %30, %41 : vector<2xf32>
 %48 = llvm.fadd %46, %47 : vector<2xf32>
 llvm.intr.masked.store %48, %45, %36 {alignment = 4 : i32} : vector<2xf32>, vector<2xi1> into !llvm.ptr<vector<2xf32>>
 %49 = llvm.add %22, %8 : i64
 llvm.br ^bb2(%49 : i64)
^bb4: // pred: ^bb2
 %50 = llvm.add %20, %6 : i64
 llvm.br ^bb1(%50 : i64)
^bb5: // pred: ^bb1
 llvm.return
} LLVM Dialect

