HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation

Hanchen Ye¹, Xiaofan Zhang¹, Zhize Huang², Gengsheng Chen², Deming Chen¹
¹University of Illinois at Urbana-Champaign,
²Fudan University
Hanchen Ye

- I’m a PhD student in University of Illinois at Urbana-Champaign (UIUC), advised by Prof. Deming Chen. I obtained my Bachelor and Master degree in Fudan University in 2017 and 2019, respectively. My research interests lie in the area of Hardware Acceleration, High-Level Synthesis (HLS), and Deep Learning.
- Personal website: hanchenye.com/about/
Outline

• Motivation
• HybridDNN Framework
• Accelerator Design
• Design Space Exploration
• Experimental Results
• Conclusion
Motivation (1)

Goals

• Easy and fast deployment
• Flexibility regarding different applications / scenarios
• High performance & efficiency

Solution?

• Complete and automated design flow which is flexible for various DNNs and FPGAs
• Winograd fast algorithm
Motivation (1)

Goals

- Easy and fast deployment
- Flexibility regarding different applications / scenarios
- High performance & efficiency

Solution?

- Complete and automated design flow which is flexible for various DNNs and FPGAs
- Winograd fast algorithm

Cloud FPGAs

Embedded FPGAs
Motivation (2)

• Winograd Algorithm $F(m \times m, r \times r)$:
 • $Y = A^T \left[[GgG^T] \odot [B^T dB] \right] A$
 • G, B, A: Winograd transformation matrices
 • \odot: Element-Wise Matrix Multiply (EWMM)

• Pros:
 • Reduce MAC number of convolution by $2.25 \times (m = 2, r = 3)$ to $4 \times (m = 4, r = 3)$

• Cons:
 • Not friendly to fully-connected (FC) layers, 1×1 convolutional (CONV) layers, and >1 stride size => Low flexibility for various DNNs
 • High memory bandwidth demand => Low flexibility for various FPGAs
Motivation (2)

• Winograd Algorithm $F(m \times m, r \times r)$:
 - $Y = A^T \left[[GgG^T] \odot [B^T dB] \right] A$
 - G, B, A: Winograd transformation matrices
 - \odot: Element-Wise Matrix Multiply (EWMM)

• Pros:
 - Reduce MAC number of convolution by $2.25 \times (m = 2, r = 3)$ to $4 \times (m = 4, r = 3)$

• Cons:
 - Not friendly to fully-connected (FC) layers, 1×1 convolutional (CONV) layers, and >1 stride size
 - \Rightarrow Low flexibility for various DNNs
 - High memory bandwidth demand
 - \Rightarrow Low flexibility for various FPGAs
Motivation (3)

- Winograd Algorithm $F(m \times m, r \times r)$:
 - $Y = A^T[(GgG^T)\odot(B^TdB)]A$
 - G, B, A: Winograd transformation matrices
 - \odot: Element-Wise Matrix Multiply (EWMM)

- Pros:
 - Reduce MAC number of convolution by $2.25 \times (m = 2, r = 3)$ to $4 \times (m = 4, r = 3)$

- Cons:
 - Not friendly to fully-connected (FC) layers, 1×1 convolutional (CONV) layers, and >1 stride size
 => Low flexibility for various DNNs
 - High memory bandwidth demand
 => Low flexibility for various FPGAs

Architecture?

× Homogeneous Winograd
✓ Hybrid Spatial / Winograd
Motivation (3)

• Winograd Algorithm $F(m \times m, r \times r)$:
 • $Y = A^T[[GgG^T] \odot [B^TdB]]A$
 • G, B, A: Winograd transformation matrices
 • \odot: Element-Wise Matrix Multiply (EWMM)

• Pros:
 • Reduce MAC number of convolution by $2.25 \times (m=2, r=3)$ to $4 \times (m=4, r=3)$

• Cons:
 • Not friendly to fully-connected (FC) layers, 1×1 convolutional (CONV) layers, and >1 stride size
 => Low flexibility for various DNNs
 • High memory bandwidth demand
 => Low flexibility for various FPGAs

Architecture?

× Homogeneous Winograd
✓ Hybrid Spatial / Winograd

Challenges

• Accelerator design:
 • Computation resource reuse
 • Memory management
 • Inter-layer context switch
 • … …

• Large design space
 • Modeling
 • Exploration
HybridDNN Framework (1)
HybridDNN Framework (2)

Input of Step 1 & 2

- FPGA Specification:
 - On-chip resources (LUT, DSP, and BRAM)
 - External memory bandwidth
 - Number of dies (for cloud FPGA)

- DNN Model:
 - DNN architecture description
 - Pre-trained weights
Output of Step1 & 2

- **DNN Mapping Strategy:**
 - Dataflow, CONV mode of each layer
 - Partition strategy of each layer

- **HLS Template Configuration:**
 - Parallel factors PI, PO, and PT
 - Number of instances NI
HybridDNN Framework (4)

Output of Step 3
- Instructions & Data Files:
 - Instructions (.bin)
 - Reordered weights data (.bin)
 - Host executable file
- FPGA Bitstream

Step 3
- Compiler
- HLS Synth.
- RTL Impl.

Step 4
- Inst. & Data Files
- FPGA DNN App.
- FPGA Runtime

Instructions & Data Files:
- Instructions (.bin)
- Reordered weights data (.bin)
- Host executable file

FPGA Bitstream
Accelerator Design (1)
Accelerator Design (1)

Efficient and Flexible

- Instruction-based accelerator with customized instruction set
- CTRL Module:
 - Load, decode, and distribute instructions to functional modules
Accelerator Design (1)

Efficient and Flexible

- Instruction-based accelerator with customized instruction set
- CTRL Module:
 - Load, decode, and distribute instructions to functional modules
Accelerator Design (1)

- Instruction-based accelerator with customized instruction set
- CTRL Module:
 - Load, decode, and distribute instructions to functional modules

Efficient and Flexible
Accelerator Design (2)
Accelerator Design (2)

• **LOAD_INP & _WGT Module:**
 - Load input feature maps and weights from external memory

• **COMP Module:**
 - Carry out the computation

• **SAVE Module:**
 - Write back output feature maps
Accelerator Design (2)

• **LOAD_INP & _WGT Module:**
 - Load input feature maps and weights from external memory

• **COMP Module:**
 - Carry out the computation

• **SAVE Module:**
 - Write back output feature maps
Accelerator Design (2)

• LOAD_INP & _WGT Module:
 • Load input feature maps and weights from external memory

• COMP Module:
 • Carry out the computation

• SAVE Module:
 • Write back output feature maps
Accelerator Design (2)

- **LOAD_INP & _WGT Module:**
 - Load input feature maps and weights from external memory

- **COMP Module:**
 - Carry out the computation

- **SAVE Module:**
 - Write back output feature maps

Module-level Pipeline
Accelerator Design (2)
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - \(PT \times PT \) GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (\(P_I \)) and output channels (\(P_O \))

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- Processing Engine (PE):
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- GEMM Cores:
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- GEMM Cores Organization:
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

• Processing Engine (PE):
 • Reused by Winograd and Spatial CONV
 • $PT \times PT$ GEMM Cores

• GEMM Cores:
 • MAC broadcast-array paralleled along input (PI) and output channels (PO)

• GEMM Cores Organization:
 • Spatial: A large broadcast array
 • Winograd: Compute independently
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- Processing Engine (PE):
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- GEMM Cores:
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- GEMM Cores Organization:
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (3)

- **Processing Engine (PE):**
 - Reused by Winograd and Spatial CONV
 - $PT \times PT$ GEMM Cores

- **GEMM Cores:**
 - MAC broadcast-array paralleled along input (PI) and output channels (PO)

- **GEMM Cores Organization:**
 - Spatial: A large broadcast array
 - Winograd: Compute independently
Accelerator Design (4)

- **Load & Save Manager:**
 - Can switch between Winograd and Spatial CONV mode

- **Spatial Mode**

- **Winograd Mode:**
 - LUT-based Winograd transformation between two domains
Accelerator Design (4)

• **Load & Save Manager:**
 • Can switch between Winograd and Spatial CONV mode

• **Spatial Mode**
 • **Winograd Mode:**
 • LUT-based Winograd transformation between two domains
Accelerator Design (4)

- **Load & Save Manager:**
 - Can switch between Winograd and Spatial CONV mode

- **Spatial Mode**
 - **Winograd Mode:**
 - LUT-based Winograd transformation between two domains
Accelerator Design (4)

• Load & Save Manager:
 • Can switch between Winograd and Spatial CONV mode

• Spatial Mode
 • Winograd Mode:
 • LUT-based Winograd transformation between two domains
Accelerator Design (4)

- **Load & Save Manager:**
 - Can switch between Winograd and Spatial CONV mode

- **Spatial Mode**

- **Winograd Mode:**
 - LUT-based Winograd transformation between two domains
Accelerator Design (4)

- **Load & Save Manager:**
 - Can switch between Winograd and Spatial CONV mode

- **Spatial Mode**

- **Winograd Mode:**
 - LUT-based Winograd transformation between two domains
Accelerator Design (4)

• Load & Save Manager:
 • Can switch between Winograd and Spatial CONV mode

• Spatial Mode

• Winograd Mode:
 • LUT-based Winograd transformation between two domains

Resource Overhead:
LUTs for Winograd transformation
Design Space Exploration

<table>
<thead>
<tr>
<th>HW Parameters</th>
<th>PI, PO, PT, NI</th>
</tr>
</thead>
</table>
| SW Parameters | \{mode_1, mode_2, ...mode_L\},
\{dataflow_1, dataflow_2, ...dataflow_L\} |
| Constraints | PI ≥ PO ≥ 1, PT ∈ \{4, 6\},
N_{LUT} < LUT, N_{DSP} < DSP, N_{BRAM} < BRAM,
mode_l ∈ \{"spat", "wino"\}, dataflow_l ∈ \{"is", "ws"\} |
| Objective | \[\sum_{l=1}^{L} T_l\] |

Presume
- Totally L CONV / FC layers
- is and ws means input and weight stationary
- T_l: latency of the l-th layer

Step0: Latency and FPGA resource (LUT, DSP, and BRAM) modeling

Step1: Search for design candidates with different HW parameters

Step2: Search for optimal SW parameters combination for each candidate

Step3: Select the design candidate with the lowest latency
Design Space Exploration

<table>
<thead>
<tr>
<th>HW Parameters</th>
<th>PI, PO, PT, NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Parameters</td>
<td>{mode_1, mode_2, ..., mode_L}, {dataflow_1, dataflow_2, ..., dataflow_L}</td>
</tr>
<tr>
<td>Constraints</td>
<td>PI \geq PO \geq 1, PT \in {4, 6}, N_{LUT} < LUT, N_{DSP} < DSP, N_{BRAM} < BRAM, mode_l \in {"spat", "wino"}, dataflow_l \in {"is", "ws"}</td>
</tr>
<tr>
<td>Objective</td>
<td>\sum_{l=1}^{L} T_l</td>
</tr>
</tbody>
</table>

Presume
- Totally L CONV / FC layers
- is and ws means input and weight stationary
- T_l: latency of the l-th layer

- **Step0**: Latency and FPGA resource (LUT, DSP, and BRAM) modeling
- **Step1**: Search for design candidates with different HW parameters
- **Step2**: Search for optimal SW parameters combination for each candidate
- **Step3**: Select the design candidate with the lowest latency
Design Space Exploration

<table>
<thead>
<tr>
<th>HW Parameters</th>
<th>PI, PO, PT, NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Parameters</td>
<td>{mode_1, mode_2, …mode_L}, {dataflow_1, dataflow_2, …dataflow_L}</td>
</tr>
<tr>
<td>Constraints</td>
<td>PI ≥ PO ≥ 1, PT ∈ {4, 6}, N_{LUT} < LUT, N_{DSP} < DSP, N_{BRAM} < BRAM, mode_i ∈ {"spat", "wino"}, dataflow_i ∈ {"is", "ws"}</td>
</tr>
<tr>
<td>Objective</td>
<td>(\sum_{l=1}^{L} T_l)</td>
</tr>
</tbody>
</table>

Presume
- Totally \(L\) CONV / FC layers
- \(is\) and \(ws\) means input and weight stationary
- \(T_l\): latency of the \(l\)-th layer

Step0: Latency and FPGA resource (LUT, DSP, and BRAM) modeling
Step1: Search for design candidates with different HW parameters
Step2: Search for optimal SW parameters combination for each candidate
Step3: Select the design candidate with the lowest latency
Design Space Exploration

<table>
<thead>
<tr>
<th>HW Parameters</th>
<th>PI, PO, PT, NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Parameters</td>
<td>{mode_1, mode_2, …mode_L}, {dataflow_1, dataflow_2, …dataflow_L}</td>
</tr>
<tr>
<td>Constraints</td>
<td>PI ≥ PO ≥ 1, PT ∈ {4, 6}, N_{LUT} < LUT, N_{DSP} < DSP, N_{BRAM} < BRAM, mode_l ∈ {"spat", "wino"}, dataflow_l ∈ {"is", "ws"}</td>
</tr>
<tr>
<td>Objective</td>
<td>(\sum_{l=1}^{L} T_l)</td>
</tr>
</tbody>
</table>

Presume

- Totally \(L\) CONV / FC layers
- \(is\) and \(ws\) means input and weight stationary
- \(T_l\): latency of the \(l\)-th layer

Step0: Latency and FPGA resource (LUT, DSP, and BRAM) modeling
Step1: Search for design candidates with different HW parameters
Step2: Search for optimal SW parameters combination for each candidate
Step3: Select the design candidate with the lowest latency
Design Space Exploration

<table>
<thead>
<tr>
<th>HW Parameters</th>
<th>(PI, PO, PT, NI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW Parameters</td>
<td>{mode_1, mode_2, \ldots mode_L}, {dataflow_1, dataflow_2, \ldots dataflow_L}</td>
</tr>
<tr>
<td>Constraints</td>
<td>(PI \geq PO \geq 1, PT \in {4, 6}, N_{LUT} < LUT, N_{DSP} < DSP, N_{BRAM} < BRAM,) (mode_l \in {"spat", "wino"}, dataflow_l \in {"is", "ws"})</td>
</tr>
<tr>
<td>Objective</td>
<td>(\sum_{l=1}^{L} T_l)</td>
</tr>
</tbody>
</table>

Presume
- Totally \(L \) CONV / FC layers
- \(is \) and \(ws \) means input and weight stationary
- \(T_l \): latency of the \(l \)-th layer

- **Step0**: Latency and FPGA resource (LUT, DSP, and BRAM) modeling
- **Step1**: Search for design candidates with different HW parameters
- **Step2**: Search for optimal SW parameters combination for each candidate
- **Step3**: Select the design candidate with the lowest latency
Experimental Results (1)

- **Xilinx VU9P Configuration:**
 - \(PI = 4, PO = 4, PT = 6, NI = 6 \)
- **PYNQ-Z1 Configuration:**
 - \(PI = 4, PO = 4, PT = 4, NI = 1 \)

<table>
<thead>
<tr>
<th>Device</th>
<th>[26]</th>
<th>[4]</th>
<th>[6]</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Xilinx VU9P</td>
<td>Arria10</td>
<td>Xilinx VU9P</td>
<td>Xilinx VU9P</td>
</tr>
<tr>
<td>Precision</td>
<td>VGG16</td>
<td>VGG16</td>
<td>VGG16</td>
<td>VGG16</td>
</tr>
<tr>
<td>Freq.(MHz)</td>
<td>16-bit</td>
<td>16-bit</td>
<td>16-bit</td>
<td>12-bit*</td>
</tr>
<tr>
<td>DSPs</td>
<td>210</td>
<td>385</td>
<td>214</td>
<td>167</td>
</tr>
<tr>
<td>CNN Perf.(GOPS)</td>
<td>4096</td>
<td>2756</td>
<td>5349</td>
<td>5163</td>
</tr>
<tr>
<td>Power(W)</td>
<td>1510</td>
<td>1790</td>
<td>1828.6</td>
<td>3375.7</td>
</tr>
<tr>
<td>LUTs</td>
<td>37.5</td>
<td>49.3</td>
<td>45.9</td>
<td>2.6</td>
</tr>
<tr>
<td>DSP Effi. (GOPS/DSP)</td>
<td>0.37</td>
<td>0.65</td>
<td>0.34</td>
<td>0.65</td>
</tr>
<tr>
<td>Energy Effi. (GOPS/W)</td>
<td>NA</td>
<td>47.78</td>
<td>37.1</td>
<td>73.5</td>
</tr>
</tbody>
</table>

DNN parameters are quantized to 8-bit; input feature maps are set to 12-bit in PE due to the Winograd matrix transformation
Experimental Results (1)

<table>
<thead>
<tr>
<th>Device</th>
<th>[26]</th>
<th>[4]</th>
<th>[6]</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xilinx VU9P</td>
<td>Xilinx</td>
<td>Arria10</td>
<td>Xilinx</td>
<td>Xilinx</td>
</tr>
<tr>
<td>Model</td>
<td>VGG16</td>
<td>VGG16</td>
<td>VGG16</td>
<td>VGG16</td>
</tr>
<tr>
<td>Precision</td>
<td>16-bit</td>
<td>16-bit</td>
<td>16-bit</td>
<td>12-bit*</td>
</tr>
<tr>
<td>Freq.(MHz)</td>
<td>210</td>
<td>385</td>
<td>214</td>
<td>167</td>
</tr>
<tr>
<td>DSPs</td>
<td>4096</td>
<td>2756</td>
<td>5349</td>
<td>5163</td>
</tr>
<tr>
<td>CNN Perf.(GOPS)</td>
<td>1510</td>
<td>1790</td>
<td>1828.6</td>
<td>3375.7</td>
</tr>
<tr>
<td>Power(W)</td>
<td>NA</td>
<td>37.5</td>
<td>49.3</td>
<td>45.9</td>
</tr>
<tr>
<td>DSP Effi. (GOPS/DSP)</td>
<td>0.37</td>
<td>0.65</td>
<td>0.34</td>
<td>0.65</td>
</tr>
<tr>
<td>Energy Effi. (GOPS/W)</td>
<td>NA</td>
<td>47.78</td>
<td>37.1</td>
<td>73.5</td>
</tr>
</tbody>
</table>

*DNN parameters are quantized to 8-bit; input feature maps are set to 12-bit in PE due to the Winograd matrix transformation

- Xilinx VU9P Configuration:
 - $PI = 4, PO = 4, PT = 6, NI = 6$
- PYNQ-Z1 Configuration:
 - $PI = 4, PO = 4, PT = 4, NI = 1$

<table>
<thead>
<tr>
<th></th>
<th>LUTs</th>
<th>DSPs</th>
<th>18Kb BRAMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VU9P</td>
<td>706353 (59.8%)</td>
<td>5163 (75.5%)</td>
<td>3169 (73.4%)</td>
</tr>
<tr>
<td>PYNQ-Z1</td>
<td>37034 (69.61%)</td>
<td>220 (100%)</td>
<td>277 (98.93%)</td>
</tr>
</tbody>
</table>
Experimental Results (2)

- **CONV Layer Test Cases:**
 - Kernel Size: 1x1, 3x3, 5x5, 7x7
 - Feature Size: 224, 112, 56, 28, 14
 - Channel Size: 512, 256, 128, 64

- **Spatial CONV:**
 - Support all kernel sizes
 - Stable and close to peak perf.

- **Winograd CONV:**
 - Higher peak perf. than Spatial CONV
 - Small feature size => Low weight reuse rate => Bounded by memory BW
Experimental Results (2)

• CONV Layer Test Cases:
 • Kernel Size: 1x1, 3x3, 5x5, 7x7
 • Feature Size: 224, 112, 56, 28, 14
 • Channel Size: 512, 256, 128, 64

• Spatial CONV:
 • Support all kernel sizes
 • Stable and close to peak perf.

• Winograd CONV:
 • Higher peak perf. than Spatial CONV
 • Small feature size =>
 Low weight reuse rate =>
 Bounded by memory BW
Experimental Results (2)

- CONV Layer Test Cases:
 - Kernel Size: 1x1, 3x3, 5x5, 7x7
 - Feature Size: 224, 112, 56, 28, 14
 - Channel Size: 512, 256, 128, 64

- Spatial CONV:
 - Support all kernel sizes
 - Stable and close to peak perf.

- Winograd CONV:
 - Higher peak perf. than Spatial CONV
 - Small feature size => Low weight reuse rate => Bounded by memory BW
Conclusion

• HybridDNN Framework: generate highly optimized accelerators for the latest generation of cloud and embedded FPGAs

• Instruction-based Architecture:
 • Hybrid CONV Processing Engine (Spatial and Winograd CONV)
 • Support multiple dataflow (input and weight stationary)
 • Scalable parallel factors (P_I, P_O, P_T, and N_I)

• Design Space Exploration:
 • Performance estimation model (4.27% and 4.03% error for VU9P and PYNQ-Z1)
 • Efficient algorithm for optimizing HW & SW parameters

• On-board Experimental Results:
 • 3375.3 (VU9P) and 83.3 (PYNQ-Z1) GOPS performance on VGG-16
Questions

Thank you!
July 22, 2020