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● Reduce design complexity: Code density can be reduced by 7X - 8X moving from RTL to C/C++ [1]

● Improve design productivity: Get to working designs faster and reduce time-to-market [2]

● Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [3]

[1] P. Coussy, et al. High-Level Synthesis: from Algorithm to Digital Circuit. 2008. Springer.
[2] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.
[3] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.
[4] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators. 2010. ArXiv.
[5] M. Yu. Chimera: An Efficient Design Space Exploration Tool for FPGA High-level Synthesis. 2021. Master thesis.

High-level Synthesis (HLS) is wonderful!

Design HLS accelerator is challenging 👿

● Friendly to experts: Rely on the designers writing ‘good’ 
code to achieve high design quality [4]

● Large design space: Different combinations of applicable 
optimizations for large-scale designs [3]

● Correlation of design factors: It is difficult for human to 
discover the complicated correlations [5]

Students are requested to accelerate a CNN model using CPU, GPU, and FPGA. The 
figure shows the percentage of students’ submissions in each performance range. The 
performances are normalized with respect to 75% of expert design’s performance [4].
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Motivations (2)

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
#pragma HLS pipeline
      C[i][j] += alpha * A[i][k] * B[k][j];
} } } Generate RTL with , , etc.

How do we do HLS 
designs?

Directive
Optimizations

Loop pipeline, unroll
Function pipeline, inline
Array partition, etc.



Generate RTL with , , etc.
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Motivations (3)
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Directive
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Function pipeline, inline
Array partition, etc.for (int k = 0; k < 32; k++) {

  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }



Generate RTL with , , etc.
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Motivations (4)

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }



Generate RTL with , , etc.

How do we do HLS 
designs?

Graph
Optimizations

Node fusion
IP integration
Task-level pipeline, etc.

Difficulties:
● Low-productive and error-proning

● Hard to enable automated design 
space exploration (DSE)

● NOT scalable! 💢

Approaches of ScaleHLS:
● Represent HLS designs at multiple 

levels of abstractions

● Make the multi-level optimizations 
automated and parameterized

● Enable an automated DSE

● End-to-end high-level analysis and 
optimization flow

Solve problems at 
the ‘correct’ level 
AND automate it
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Motivations (5)

Manual Code Rewriting

Manual Code Rewriting

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
#pragma HLS pipeline
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int i = 0; i < 32; i++) {
  for (int j = 0; j < 32; j++) {
    C[i][j] *= beta;
    for (int k = 0; k < 32; k++) {
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

for (int k = 0; k < 32; k++) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j < 32; j++) {
      if (k == 0)
        C[i][j] *= beta;
      C[i][j] += alpha * A[i][k] * B[k][j];
} } }

Loop
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Loop interchange
Loop perfectization
Loop tile, skew, etc.

Directive
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Array partition, etc.



Background: MLIR

Source: The Golden Age of Compiler Design in an Era of HW/SW Co-design by Chris Lattner

https://youtu.be/4HgShra-KnY


Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control 
flow) [3] dialect. Can leverage the transformation and 
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

ScaleHLS Framework (1)

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

%O = "onnx.Gemm"(%I, %W, %B) {...} : 
(tensor<1x512xf32>, tensor<10x512xf32>, tensor<10xf32>) 
-> tensor<1x10xf32>

Graph-level IR

affine.for %i = 0 to 1 {
  affine.for %j = 0 to 10 {
    ... ...
    affine.for %k = 0 to 512 {
      %1 = affine.load %I[%i, %k] : memref<1x512xf32>
      %2 = affine.load %W[%j, %k] : memref<10x512xf32>
      %3 = affine.load %O[%i, %j] : memref<1x10xf32>
      %4 = mulf %2, %3 : f32
      %5 = addf %4, %5 : f32
      affine.store %5, %O[%i, %j] : memref<1x10xf32>
} } }

Loop-level IR

affine.for %i = 0 to 1 {
  affine.for %j = 0 to 10 {
    ... ...
    affine.for %k = 0 to 512 {
      ... ...
    } {loop_directive = #hlscpp.ld<pipeline=1, ...>}
  } {loop_directive = #hlscpp.ld<pipeline=0, ...>}
} {loop_directive = #hlscpp.ld<pipeline=0, ...>}

Directive-level IR

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS


Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control 
flow) [3] dialect. Can leverage the transformation and 
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and 
directive levels. Solve optimization problems at the 
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource 
utilization through IR analysis.

ScaleHLS Framework (2)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS


Explore It!

Transform and Analysis Library: Parameterized 
interfaces of all optimization passes and the QoR 
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of 
the throughput-area trade-off design space.

Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control 
flow) [3] dialect. Can leverage the transformation and 
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and 
directive levels. Solve optimization problems at the 
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource 
utilization through IR analysis.

ScaleHLS Framework (3)

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS


Represent It!

Graph-level IR: ONNX [1] and ATen [2] dialect.

Loop-level IR: Affine [3] and SCF (structured control 
flow) [3] dialect. Can leverage the transformation and 
analysis libraries applicable in MLIR.

Directive-level IR: HLSCpp, Affine, and SCF dialect.

ScaleHLS Framework (4)

[1] ONNX-MLIR: Compiling ONNX Neural Network Models Using MLIR. https://github.com/onnx/onnx-mlir
[2] NPComp: MLIR based compiler toolkit for numerical python programs. https://github.com/llvm/mlir-npcomp
[3] MLIR: Multi-Level Intermediate Representation. https://github.com/llvm/llvm-project/tree/main/mlir
[4] Vitis HLS Front-end: https://github.com/Xilinx/HLS

Optimize It!

Optimization Passes: Cover the graph, loop, and 
directive levels. Solve optimization problems at the 
‘correct’ abstraction level. 💪
QoR Estimator: Estimate the latency and resource 
utilization through IR analysis.

Explore It!

Transform and Analysis Library: Parameterized 
interfaces of all optimization passes and the QoR 
estimator. A playground of DSE. 🚀
Automated DSE Engine: Find the Pareto-frontier of 
the throughput-area trade-off design space.

Enable End-to-end Flow!

HLS C Front-end: Parse C programs into MLIR.

HLS C/C++ Emitter: Generate synthesizable HLS 
designs for downstream tools, such as Vivado HLS.

[4]

https://github.com/onnx/onnx-mlir
https://github.com/llvm/mlir-npcomp
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/Xilinx/HLS


ScaleHLS Optimizations (1)

Coarse-grained
Pipelining

(dataflow pragma)

-legalize-dataflow
-split-function

-legalize-dataflow=”insert-copy=true” 
-split-function

-legalize-dataflow=“insert-copy=true”
-split-function=“min-grain=2”

Enable a graph-level 
throughput-area trade-off



ScaleHLS Optimizations (2)

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and
Directive

Opt in MLIR

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j <= i; j++) {
      C[i][j] *= beta;
      for (int k = 0; k < 32; k++) {
        C[i][j] += alpha * A[i][k] * A[j][k];
} } } } Baseline C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram

#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram

  for (int k = 0; k < 32; k += 2) {
    for (int i = 0; i < 32; i += 1) {
      for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
        if ((i - j) >= 0) {
          int v7 = C[i][j];
          int v8 = beta * v7;
          int v9 = A[i][k];
          int v10 = A[j][k];
          int v11 = (k == 0) ? v8 : v7;
          int v12 = alpha * v9;
          int v13 = v12 * v10;
          int v14 = v11 + v13;
          int v15 = A[i][(k + 1)];
          int v16 = A[j][(k + 1)];
          int v17 = alpha * v15;
          int v18 = v17 * v16;
          int v19 = v14 + v18;
          C[i][j] = v19;
} } } } }

Optimized C 
emitted by the 
C/C++ emitter

Loop perfectization

Loop order permutation; Loop unroll

Remove variable loop bound

Loop pipeline

Array partition

Simplify if ops;
Store ops forward;
Simplify memref ops

Each parameter of an 
optimization is a 

tunable knob in DSE



Design Space Exploration (1)

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

Pareto frontier of a GEMM kernel



Design Space Exploration (2)

DSE algorithm:
1. Sample the whole design space and evaluate each 

sampled design point with the QoR estimator

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

Sample the design space

Non-Pareto point
Pareto point
Point to be evaluated



Design Space Exploration (3)

DSE algorithm:
1. Sample the whole design space and evaluate each 

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design 
points

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

Non-Pareto point
Pareto point
Point to be evaluated

Evaluate and find Pareto frontier



Design Space Exploration (4)

DSE algorithm:
1. Sample the whole design space and evaluate each 

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design 
points

3. Evaluate the closest neighbor of a random selected 
design point in the current Pareto frontier

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

Randomly pick one Pareto point

Evaluate its closest neighbor

Non-Pareto point
Pareto point
Point to be evaluated



Design Space Exploration (5)

DSE algorithm:
1. Sample the whole design space and evaluate each 

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design 
points

3. Evaluate the closest neighbor of a random selected 
design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered 
Pareto frontier

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

A new Pareto point, add it

An old one is dominated, remove it
Non-Pareto point
Pareto point
Point to be evaluated



Design Space Exploration (6)

DSE algorithm:
1. Sample the whole design space and evaluate each 

sampled design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design 
points

3. Evaluate the closest neighbor of a random selected 
design point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered 
Pareto frontier

5. Stop when no eligible neighbor can be found or 
meeting the early-termination criteria

● Each parameter of a transform pass is one dimension, 
the multi-dimensional design space is reduced to two 
dimensions through PCA

● Pareto points are located at a corner of the design 
space, the variance of Pareto points is much smaller 
than the overall variance

Given the Transform and Analysis Library provided by 
ScaleHLS, the DSE engine can be extended to support 
other optimization algorithms in the future.

We have an ‘estimated’ 
Pareto frontier in the end

Non-Pareto point
Pareto point
Point to be evaluated



DSE Results of Computation Kernel

Speedup is with respect to the baseline designs only optimized by Xilinx Vivado HLS. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively. 
In the Loop Order Optimization,the 𝑖-th loop in the loop nest is permuted to location 𝑃𝑒𝑟𝑚𝑀𝑎𝑝[𝑖], where locations are from the outermost loop to inner.



Optimization Results of DNN Models

Speedup is over the baseline design only optimized by Vivado HLS.

𝐷, 𝐿{𝑛}, and 𝐺{𝑛} denote directive, loop, and graph optimizations, respectively. Larger 𝑛 indicates stronger optimizations are applied.



Conclusion
● We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level 

representation and optimization of HLS designs and supports a transform and analysis library 
dedicated for HLS.

● ScaleHLS enables an end-to-end compilation pipeline by providing an HLS C front-end and a 
synthesizable C/C++ emitter. 

● An automated and extensible DSE engine is developed to search for optimal solutions in the 
multi-dimensional design spaces.

● Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale 
and sophisticated HLS designs and achieves significant performance and productivity 
improvements on a set of benchmarks.



Future Directions
● IP Integration. The graph-level representation of ScaleHLS enables the ability to integrate 

existing HLS IPs, such as Vitis Accelerated Libraries [1], into the compilation flow. Meanwhile, 
new IPs can be generated through launching the DSE engine of ScaleHLS.

● DSE algorithms. The parameterized interfaces provided by the analysis and transform libraries 
of ScaleHLS enable a large opportunity to investigate the optimization algorithms for the 
multi-dimensional DSE problem of HLS.

● Machine-learning based QoR estimation. Machine-learning methods can potentially capture 
more features from the hierarchical IR of ScaleHLS, thereby generating better estimation results 
than the analytical model-based methods.

● Generate RTL code within MLIR. Currently ScaleHLS leverages external back-ends for 
generating the RTL code. However, a direct RTL code generation can keep more information 
from the higher level IR and exploit the RTL-level representation and optimization (CIRCT [2]) to 
further improve the quality of the accelerator designs.

[1] Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_Libraries
[2] CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt/tree/main/

https://github.com/Xilinx/Vitis_Libraries
https://github.com/llvm/circt/tree/main/
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Hanchen Ye
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