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Dense matrix multiply (MM) serves as one of the most heavily used kernels in deep learning applications. To
cope with the high computation demands of these applications, heterogeneous architectures featuring both
FPGA and dedicated ASIC accelerators have emerged as promising platforms. For example, the AMD/Xilinx
Versal ACAP architecture combines general-purpose CPU cores and programmable logic with AI Engine
processors optimized for AI/ML. An array of 400 AI Engine processors executing at 1 GHz can provide up to 6.4
TFLOPS performance for 32-bit floating-point (FP32) data. However, machine learning models often contain
both large and small MM operations. While large MM operations can be parallelized efficiently across many
cores, small MM operations typically cannot. We observe that executing some small MM layers from the BERT
natural language processing model on a large, monolithic MM accelerator in Versal ACAP achieved less than
5% of the theoretical peak performance. Therefore, one key question arises: How can we design accelerators to
fully use the abundant computation resources under limited communication bandwidth for end-to-end applications
with multiple MM layers of diverse sizes?
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We identify the biggest system throughput bottleneck resulting from the mismatch between the massive
computation resources of one monolithic accelerator and the variousMM layers of small sizes in the application.
To resolve this problem, we propose the CHARM framework to compose multiple diverse MM accelerator
architectures working concurrently on different layers within one application. CHARM includes analytical
models that guide design space exploration to determine accelerator partitions and layer scheduling. To
facilitate system designs, CHARM automatically generates code, enabling thorough onboard design verification.
We deploy the CHARM framework on four different deep learning applications in FP32, INT16, and INT8
data types, including BERT, ViT, NCF, and MLP, on the AMD/Xilinx Versal ACAP VCK190 evaluation board.
Our experiments show that we achieve 1.46 TFLOPS, 1.61 TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS inference
throughput for BERT, ViT, NCF, andMLP in FP32 data type, respectively, which obtain 5.29×, 32.51×, 1.00×, and
1.00× throughput gains compared to one monolithic accelerator. CHARM achieves the maximum throughput
of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in the INT16 data type for the four applications. The
maximum throughput achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28 TOPS, 10.19 TOPS, and
21.58 TOPS, respectively. We have open-sourced our tools, including detailed step-by-step guides to reproduce
all the results presented in this article and to enable other users to learn and leverage CHARM framework and
tools in their end-to-end systems: https://github.com/arc-research-lab/CHARM.

CCS Concepts: • Computer systems organization→ Heterogeneous (hybrid) systems; • Hardware→
Hardware-software codesign;

Additional Key Words and Phrases: Heterogeneous Architecture, Domain-Specific Accelerator, Versal ACAP,
Mapping Framework, Matrix-Multiply, Deep Learning
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1 Introduction
Dense matrix multiplication (MM) serves as one of the most heavily used kernels in many
deep learning workloads, including BERT [1] for natural language processing, NCF [2] for recom-
mendations, ViT [3] for vision classification, and MLP [4] for multilayer perceptron classification
or regression. According to profiling results from Google [5], dense MM tasks occupied 90% of
the Neural Network (NN) inference workload in Google’s data center in 2017. The increasing
complexity of these applications leads to extreme demands for computation and data movement.

According to [6–9], the off-chip bandwidth has been a bottleneck for both the performance and
energy efficiency of a system and a common trend on current platforms is that the off-chip bandwidth
does not scale as fast as the computational resources. Therefore, the first research question arises:
How to sustain the faster scaling computation with the slower scaling off-chip bandwidth?

A common solution is to increase data reuse by allocating more on-chip storage within an
accelerator (acc). As shown in the asymptotic analysis in [9], the total off-chip communication
volume in MM scales as O( 1√

"
), where M is the on-chip tile size. If we increase the tile size, we can

reduce the total communication volume, thereby reducing the pressure on the off-chip bandwidth.
In this work, we target the AMD/Xilinx Versal ACAP architecture [10], which combines general-

purpose CPU cores and programmable logic (PL) with AI Engine (AIE) optimized for AI/ML
computation. For example, we implemented an MM acc on an AMD/Xilinx VCK190 board using
384 AIEs and over 80% on-chip URAM and BRAM resources. The red line in Figure 1 illustrates
the performance of this acc. This design operates on a native tile size of 1536 × 128 × 1024 and
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Fig. 1. Throughput of square MM under different sizes.

achieves 3.7 TFLOPS throughput when carrying out a tiled execution of a large square MM (point A).
However, when simply mapping different sizes of MM to such a design, the performance decreases
significantly as the square MM size drops below 512, since each tile is padded to the native tile
size of the acc. For instance, at point B, the performance of such a monolithic design drops to
0.65 GFLOPS, which is 5760 × lower than at point A. Although padding is a common and simple
approach to implementing small MM operations on a large acc, it can waste both computation and
bandwidth. More specifically, in point B, when using an acc that computes with a tile size of 1536 ×
128 × 1024, padding the matrix from 64 × 64 × 64 to 1536 × 128 × 1024 leads to a 768 × inefficiency
due to excessive invalid computation. Additionally, in point B, since there is only one tile, there is
no overlap between communication and computation, which leads to another 7.5 × gap. Together,
this explains the inefficiency caused by the mismatch between the original kernel shape and the
monolithic acc’s shape size.

An alternative to padding is to implement multiple accs with smaller native tile sizes, potentially
executing different tasks on each acc in parallel [11].We apply this approach using eight independent
accs with a native tile size of 256 × 128 × 256, as illustrated by the blue dashed line in Figure 1.
For small square MM operations with size 64, this approach achieves 7.2 GFLOPS at point C,
approximately an 11 × speedup compared to point B.

However, the smaller acc size also means less data reuse for large MM, with total through-
put nearly saturating when the operation size is larger than 256. When the MM size is 3072
(point D), the total throughput from eight duplicate accs is 5.4× smaller than that at point A in one
monolithic design.

These experiments expose two conflicting design goals. Firstly, we want to implement large
MM operations with sufficient data reuse to achieve the highest possible performance on the
devices. Secondly, we want to implement small MM operations while minimizing computation and
communication overheads. Neither of these simple designs seems able to achieve these design goals
simultaneously.Therefore, the second research question arises:How does one tradeoff between the two
design goals for real-world, end-to-end applications where MM layers of large and small sizes coexist?

To illustrate how these conflicting design goals can affect the performance of practical machine
learning models, we consider BERT [1] as a representative workload containing MM layers of both
large and small sizes. In a transformer layer of BERT, there are a total of 8 types of MM kernels,
where Kernels 0-5 are large MMs, and Kernels 6 and 7 are batch dots, i.e., small MMs. The detailed
shapes can be referred to in Table 6. Take Kernel 5 and Kernel 6 as examples: Kernel 5 is an MM
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Fig. 2. Execution timeline of one monolithic MM design vs. two diverse MM accs design for BERT on VCK190.

with the shape 3072 × 1024 × 4096; Kernel 6 is a batch dot with the shape 96 × 512 × 512 × 64,
which means there are 96 small independent MMs sized at 512 × 512 × 64.

As shown in Figure 2, when using a single monolithic MM acc, Kernels 0-5 consume 92% of the
total BERT MM computation operations and 12% of the total MM acc time. In contrast, Kernels 6-7
consume 8% of the total operations but take 88% of the total MM acc time. For Kernels 0-5, they lie
in Region A (a region that performs similarly to Point A in Figure 1), where the throughput of acc
is more than 2082 GFLOPS. For Kernels 6-7, they lie in Region B, where the throughput of acc is
only 23.6 GFLOPS. Given that there is a large portion of acc execution underutilized in the timeline,
the overall MM acc throughput is only 276 GFLOPS. Can we achieve a design for BERT that lies in
region A, i.e., good for large MMs, and also in a region better than point C, i.e., good for small MMs
with less or no wasted computation/bandwidth?

Our answer is “Yes.” The key idea is to allocate a larger portion of the resources to accs dedicated
to computing larger MMs and a smaller portion of the resources to other accs for computing smaller
MMs simultaneously, as shown in Figure 2, where a two-diverse accs system is illustrated. To
achieve our design goals, we need to solve these new challenges. First, we need to achieve high
computation utilization for every single acc, i.e., use the smaller acc(s) to reduce the waste for small
MMs and use the larger acc(s) to maximize the data reuse for large MMs. Second, to maximize
overall utilization while maintaining high throughput and low latency, we need to carefully overlap
the execution times for these accs by co-optimizing workload and resource partitioning. Third, to
facilitate the design space exploration (DSE), we need analytical models to optimize the overall
throughput under resource and bandwidth constraints. Fourth, to reduce the programming effort
for system implementation, we need automatic code generation. Fifth, to resolve the dependency
of the kernels within the application graph when running multiple accs, we need an acc runtime to
schedule kernels from different tasks onto the accs.

To answer the research questions, we propose the CHARM architecture and its corresponding
automation framework, the CHARM framework. Our contributions are summarized below:

—CHARM Systematical Design Methodology on Versal: To achieve high computation and commu-
nication efficiency for each acc, in Section 4, we propose a thorough design methodology on
the Versal heterogeneous platform. We further provide an automatic CHARM DSE (CDSE)
to find the optimized single acc configuration.

—CHARM Architecture and Framework: To achieve the design goals of good performance for
MMs with both small and large sizes in an application, in Section 5 we propose the CHARM
architecture and the CHARM framework to find the optimized design. In the CHARM frame-
work, there are several modules. First, on top of CDSE, we propose the CHARM Diverse
Accelerator Composer (CDAC), which features a sort-based two-step search algorithm
to find an optimized CHARM design in polynomial time complexity instead of exponential
time complexity. Furthermore, to automate the system implementation, CHARM Automatic
Code Generation (CACG) is proposed to generate source code files for AIEs, PL, and the
host CPU. Lastly, the greedy-algorithm-based CHARM Runtime Scheduler (CRTS) is
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launched in the host CPU that schedules different kernels to the accs for optimizing both
task latency and overall system throughput. A mixed-integer-programming (MIP) math-
ematical formulation is proposed to prove the optimality and search time efficiency of the
greedy-algorithm-based CRTS.

—We deploy the CHARM framework to accelerate four applications with multiple data types on
the VCK190 in Section 6. Our onboard experiments demonstrate that CHARM achieves 1.46
TFLOPS, 1.61 TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS FP32 inference throughput for BERT,
ViT, NCF, and MLP applications, which obtain 5.29×, 32.51×, 1.00×, and 1.00× throughput
gains compared to one monolithic acc. CHARM achieves the maximum throughput of 1.91
TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in the INT16 data type for the four applications.
The maximum throughput achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28
TOPS, 10.19 TOPS, and 21.58 TOPS, respectively.

—White-Box Open-Source Tools for Versal. While AMD provides users with a black-box integer
programming (IP) for NN applications called DPU [11], we have open-sourced our tools
completely as a white-box, including a detailed step-by-step guide to reproduce all the results
presented in this article and to enable other users to learn and leverage them in their end-to-end
systems. (https://github.com/arc-research-lab/CHARM)

2 Prior Work
To achieve high throughput and energy efficiency, NN accs usually employ a large number of
processing elements (PEs) and share a similar memory hierarchy. That is, while the bulk of
data is stored in the off-chip memory, there are multiple levels of on-chip buffers, including the
local memory attached to each PE and global shared memory, to further reduce the costly data
movement from/to off-chip memory. Several works contribute to NN accs by discussing the data
reuse opportunities, computation parallelism, and the choice of dataflow.

However, many of the prior works apply a one-size-fits-all monolithic design that cannot effi-
ciently handle layers with huge differences in shapes and sizes (Eyeriss [12, 13], ShiDiannao [14],
NPU [15–17] and others [18–21]). AutoSA [22] is a polyhedral-based compilation framework that
generates monolithic systolic array designs for dense matrices. Sextans and Serpens [23, 24] are
general-purpose monolithic accs for sparse matrices. [25, 26] analyze layout and pipeline efficiency.
Other works like AMD DPU [11], Mocha [27] explore task-level parallelism by allocating multiple
duplicate accs on the device without specializing each acc. DNNBuilder [28] designs a dedicated acc
for each layer according to the number of operations within the layer. DNNExplorer [29] enhances
DNNBuilder by combining dedicated accs for the first several layers and a monolithic acc for the
rest of the layers. While it employs multiple accs, it lacks a comprehensive exploration of workload
assignments. TETRIS [30] and TANGRAM [31] propose multiple dataflow optimizations within and
across the NN layers to improve performance and energy efficiency. Although they offer diverse
acc designs, they lack the DSE and workload assignment for high overall throughput. Herald [32]
proposes an architecture with multiple diverse accs and explores the workload assignment and
resource partition. Still, they choose several existing acc designs from their candidate pool, e.g.,
ShiDiannao [14], NVDLA [33] without doing DSE for each acc. FPCA [34] and CHARM’12 [35]
propose a fully pipelined and dynamically composable coarse-grained reconfigurable architecture
and compose loosely coupled accs for different kernels within an application via permutation
network, which costs high in chip area.

In conclusion, we summarize the differences between our work and prior works in Table 1. Our
work is capable of choosing the design from one of three options: monolithic, multiple duplicates,
and multiple diverse accs. Each acc is a specialized design that considers different workload
assignments, dataflow, and data parallelism strategies covered by our DSE.
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Table 1. Comparison with Prior Works

Prior
Works

One
Mono

Multi
Duplicate

Multi
Diverse

Workload
Assignment

Specialization
for Acc

Eyeriss etc. [12–26] Ø × × × ×
DPU etc. [11, 27] Ø Ø × × ×

DNN Expl. etc. [28, 29] Ø Ø Ø × ×
Herald [32] Ø Ø Ø Ø ×

CHARM (Ours) Ø Ø Ø Ø Ø

Fig. 3. Versal ACAP architecture.

3 Versal ACAP Architecture Overview
In this section, we first use VCK190 as a representative example to illustrate the system architecture
of AMD/Xilinx Versal ACAP architecture in Section 3.1. We then elaborate on the tile structure of
a single AIE and the connections between AIEs↔AIEs and PL↔AIEs in Sections 3.2, 3.3, and 4.3,
respectively.

3.1 Versal ACAP Architecture
Figure 3 illustrates the overall architecture of the VCK190 [36] and highlights the AIE array at the
top. The VCK190 board features (1) the first-generation AIE architecture, which has 8 × 50 1 GHz
7-way VLIW processors supporting vector operations up to 1024 bits [37], (2) ARM processors
for running Linux and general-purpose applications, and (3) PL for designing application-specific
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Fig. 4. Versal ACAP tile structure of AIE.

hardware with Digital Signal Processors (DSP) available for integration. The AIE cores and ARM
CPUs can be programmed with C/C++ code, while the PL can be programmed using both RTL and
C/C++ code with High-Level Synthesis (HLS) [38–43]. These three components are integrated with
I/O peripherals, such as PCIe and DRAM controllers, into a heterogeneous SoC with a Network-on-
Chip (NoC). The VCK190 board is equipped with one DDR4-DIMM off-chip memory module with a
peak bandwidth of 25.6 GB/s.

3.2 The Tile Architecture of a Single AIE
Figure 4 illustrates the tile architecture of the AIE, which mainly consists of the AIE core, AIE local
memory, and wire connections. Each AIE core is a vector processor that supports up to 7-way
VLIW instructions, including one vector, one scalar, two load, one store, and two move instructions.
The vector instruction supports up to 8, 32, and 128 MACs/cycle in FP32, INT16, and INT8 data
types, respectively. The scalar instruction supports general-purpose data processing, e.g., non-linear
functions. While the load and store instructions are responsible for transferring data between local
memory and vector registers, the move instruction handles data movement between the 2048-bit
vector registers and 3072-bit accumulation registers within each AIE core. Additionally, an AIE
processor core owns 32 KB of local memory, which consists of eight memory banks. The AIE core
can access multiple banks from four ports at the same time if there are no bank conflicts.

3.3 Data Transmission within AIE Array (AIEs↔AIEs)
In terms of data communication between AIEs, there are mainly three kinds of connections: the
shared memory, the cascade stream, and the AXI Stream. A tile of data can be transferred between
neighboring AIEs through the shared memory in a ping-pong buffer manner with two 256-bit load
and one 256-bit store instructions, as mentioned above. On the other hand, the cascade connection
provides a 384-bit fine-grained stream access that can transfer data between accumulator registers
in neighboring AIEs. Unlike the shared memory, the cascade stream is a single-direction connection
alternating between rows. In addition to the neighboring transfer, the data movement between
non-neighboring AIEs is through the AXIS stream network, connected by the switch boxes with a
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32-bit width per wire. Each AIE core has two input and two output connections from/to the switch.
Each switch has six output ports to its north neighbor, thus six input ports from its south neighbor.
For the rest of the directions, the switch has four I/O ports with its neighbor.

3.4 Data Transmission between AIE and PL (PL↔AIEs)
Communication between AIE and PL is through the programmable logic input/outputs (PLIOs)
in the 39 interface tiles. On the PL domain, each interface tile has eight 64-bit input channels
and six 64-bit output channels running at the PL clock frequency. The connections can also be
configured as 128-bit to catch up with the speed of the AIE side, with the number of channels
being halved. On the AIE domain, there are eight 32-bit input channels and six 32-bit output
channels running at 1 GHz. Inside the AIE array, the ports from the PLIO are also connected
throughout the AXI stream mesh through the AXI switches. The AXIS switches can be reconfigured
in two ways, i.e., circuit-switched and packet-switched. Circuit-switched connections provide
dedicated, deterministic communication and support broadcast, where data from a single input
channel is transmitted to multiple output channels simultaneously. Packet-switched connections
allow data from an input channel to be dynamically routed to different destinations based on a
destination header at the start of each packet. This enables data flows to be time-multiplexed on
a single routing path. One situation in which we can use packet-switched connections happens
when the computation-to-communication (CTC) ratio of an AIE is more than one. During the
computation of AIE 0, the port assigned to this AIE is idle and thus can be used to transfer data to
another AIE, say AIE 1, by assigning a different header that matches the destination ID of AIE 1.

3.5 Unveil the Optimization Design Space for Versal Architecture
The heterogeneity of the Versal architecture provides abundant potential optimizations to achieve
high performance for deep learning applications. In this section, we will unveil the optimization
design space, which motivates the creation of the CHARM framework for automatic mapping. (1)
The AIEs in Versal are different from the traditional MAC array composed of DSPs because of their
VLIW characteristics. Simply abstracting them by the number of maximum MACs each core could
do is no longer enough. Rather, the data locality of local memory as well as the data reuse in the
register are of great significance to AIE performance. (2) The high-speed AXIS network is flexible so
that more choices of parallelism and dataflow can be explored in the AIE array. For example, many
previous works [22, 44, 45] explore the 2D-array parallelism with 1D-SIMD capability, whereas
3D-array parallelism with 3D-SIMD instruction is covered in the CHARM framework. (3) Good
orchestration between AIE and PL is required in Versal to sustain the high throughput of the AIE
array, which hasn’t been systematically explored by other works. Thus, we propose the CHARM
framework, which takes an in-depth analysis of the Versal architecture, abstracts an accurate
architecture modeling, and designs an automatic framework for deep learning mapping.

4 CHARM Single Accelerator Design
High-throughput and low-latency are two significant evaluation criteria for deploying deep learning
models on computing platforms. Many previous solutions including Eyeriss [12, 13], ShiDiannao
[14], NPU [15–17] allocated hundreds of MAC arrays to a monolithic design which achieves good
efficiency for applications with uniform large layers. In order to achieve high performance for those
applications, we describe the dataflow and mapping strategy to sustain the throughput of a single
MM acc with hundreds of AIEs in Section 4.1. In Section 4.2, we present our proposed optimization
techniques to achieve high single AIE efficiency. Then in Section 4.3 and 4.4, we demonstrate the
IO and data reuse to balance the massive computation parallelism and communication among AIEs
between PL↔AIEs and PL↔DDR.
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Listing 1. Pseudocode for MM Loop Tiling and Dataflow.

4.1 Dataflow and Mapping Strategy of a Single Matrix Multiply Accelerator
Listing 1 depicts the overall four-level tiling and mapping strategy for basic dense matrix-matrix
multiplication. The innermost loop tiling (Lines 16–20) implements MM on a single AIE core and
exploits instruction-level parallelism and data-level parallelism by issuing fully pipelined 3D-SIMD
(vector-matrix multiplication) instructions. Each AIE stores a (TI × TK) left-hand-side (LHS)
and a (TK × TJ) right-hand-side (RHS) matrix and computes a (TI × TJ) output matrix in its
local memory. The second-innermost loop tile (Lines 12-14) represents the spatial distribution of
execution across different AIE cores in the AIE array. These loops are fully unrolled and computed
on (A × B × C) AIE cores in a parallel fashion. The spatial distribution also corresponds to the
number of required I/Os, which will be discussed in Section 4.3. The third-innermost time loop tile
(Lines 7–9) represents the sequential processing of data stored in PL on-chip memories. The data
from on-chip PL buffers is fed into the AIE array (X × Y × Z) times, and the intermediate partial
sum from the AIE array is accumulated on the PL. The outermost loop (Lines 2–4) represents the
temporal processing of data stored in off-chip memory, enabling the processing of large matrices
that do not fit in on-chip memory. The loop boundary can be determined by the overall input matrix
size (M, K, N).

4.2 Level 0: Efficient VLIW Scheduling in A Single AIE
Firstly, at the single AIE level, in order to sustain the high throughput of a single AIE, the data
orchestration between the AIE local memory and AIE registers under the bandwidth constraints
serves as the key point. More specifically, we optimize the single AIE kernel by applying the
following techniques: 1© We separate the workload of a single AIE () � × ) × ) � ) into small
partitions by Unrolling Multiple VLIW Instructions in the innermost loop. 2© The Double Register
technique is utilized to overlap the time spent on register loading with the MAC operations. 3© To
balance the computation and communication, Register Reuse is mathematically analyzed. 4© We
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Fig. 5. Single AIE VLIW scheduling.

apply the Output Stationary Dataflow, meaning that we set k.3 as the innermost loop in the AIE
design.

Among the data types supported in the current AIE, due to the high parallelism (128 MACs/-
Cycle/AIE), the INT8 data type is the most difficult one to balance in terms of computation and
communication. Thus, we illustrate the designed VLIW scheduling for INT8 in Figure 5. Note that
other data types share a similar methodology but are more prone to design. In this example, we
pack 16 8 × 8 × 2 INT8 MAC operations together to form a small partition with size 8 × 64 × 4.
This provides the AIE compiler more opportunities to launch software pipelining and thus is prone
to get the back-to-back issued MAC instructions ( 1©). Two 512-bit vector registers �0 and �1 are
allocated as double registers for the LHS matrix. Each of them is capable of holding 8 × 8 8-bit LHS
operands. �0 and �1 represent two 256-bit registers, with each one consisting of two 8 × 2 8-bit
sub-registers denoted by �G,0 and �G,1 ( 2©). By doing so, at Cycles 2-3 while the MAC operation
depends on the data stored in registers A0 and B0, it can pre-load the data to registers A1 and
B1 simultaneously for MAC operations that will execute in Cycles 4-5. This register overlapping
process comes along with careful consideration for the size of registers and local memory access
bandwidth ( 3©). 8 × 8 × 2 MAC operation is manually constructed instead of the original 16 × 8 × 1
one to guarantee that the size of registers is under 2048 bits after double buffering. Registers �0

and �1 are both reused twice, which allows their ping or pong buffer to be filled by two 256-bit
load instructions in two cycles. Finally, to avoid frequent register eviction, we only store data from
2 768-bit accumulation registers (�0 and �1) back to local memory every 16 cycles, as shown in
Cycles 18-19 ( 4©). This hugely reduces the temporary results eviction and reloading between the
local memory and registers, thus saving precious load/store bandwidth. During VLIW scheduling,
we also explore other dataflows, e.g., LHS/RHS-stationary, by changing the loop permutation.
However, because of intermediate results access, these dataflows incur three simultaneous read
operations from local memory to the registers, whereas the VLIW is capable of packing only two
read operations at the same time, leading to less efficient VLIW packing.

4.3 Level 1: IO Connections within the AIE Array and between AIE and PL
Secondly, at the AIE array level, we evenly partition the workloads among � × � ×� AIEs, which
form a rectangular physical layout in the 8 × 50 AIE array. Shared memory or cascade streams are
applied to transmit the output matrices between neighboring AIEs, while the packet-switch and
broadcast mechanisms are utilized to transfer the LHS and RHS matrices.

Data Transfer Between AIEs: Shared Memory vs. Cascade Stream (AIE↔AIE). To leverage the high
bandwidth of intra-AIE communications, we explore the data forwarding for the output temporary
data in two granularities, i.e., the tile-level shared memory and register-level cascade stream. The
graph-level execution models of these two granularities are shown in Figure 6(a) and (b). The AIEs
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Fig. 6. Data transfer between AIEs: shared memory vs. cascade stream.

connected by the shared memory apply a ping-pong buffer manner. During processing, while AIE 1
is calculating the data in the ping buffer of AIE 0, AIE 0 is storing the result in its pong buffer. The
access pattern alternates during each time step. Because of the mechanism of the ping-pong buffer,
the dependency between the adjacent AIEs leads to the tile-level overhead as shown in Figure 6(c).
More specifically, AIE 1 can start computing Tile 0 (T0) only after AIE 0 stores all the data of T0 in
the local buffer. On the other hand, the cascade stream provides a dedicated 384-bit connection
with a four-depth 384-bit FIFO between the neighboring AIEs. In this situation, the first result of
the previous AIE triggers the execution of the latter one. By applying the same execution pattern
for adjacent AIEs, we create a fine-grained pipeline without cascade stall and thus lead to negligible
overhead as shown in Figure 6(d).

Data Transfer Between AIEs and PL: Packet-Switched & Broadcast (AIE↔PL). At the AIE↔PL level,
when feeding data to tens or hundreds of AIEs, since the number of PLIOs connecting the AIE
array and PL is much smaller than the total number of AIE cores, we reduce the number of required
PLIOs by exploring the data broadcast and packet-switch mechanisms (described in Section 3.3).
Figure 7 shows how we reuse a single PLIO port by combining broadcast with packet switching.
Assume that we have a 4 × 4 AIE array that calculates an MM of size 1 × 4 × 4 (1 MAC/AIE). It
takes one cycle for one AIE to get the LHS and the RHS operands and four cycles to finish one
multiplication, which makes the CTC ratio equal to 4. By leveraging the data reuse opportunity
in MM (e.g., the row of LHS can be reused by different columns of RHS), we can broadcast the
first data from LHS to the first row of AIE arrays at Time 0 utilizing one PLIO port as shown in
solid lines. At Time 1, by specifying a different destination header, we can transfer the second data
of LHS to the second row of the AIE array by reusing the same PLIO port. At Times 2 and 3, the
third and fourth data of LHS are sent to the third and fourth rows of AIEs. At Time 4, the first row
of AIEs finishes the computation, and the PLIO completes the data transfer to the fourth row of
AIEs. Therefore, in this case, we can use one PLIO port to send LHS data to 16 AIEs without any
performance degradation.
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Fig. 7. Combining broadcast circuit-switched and packet-switched connections to reduce required I/O for
AIE array.

4.4 Levels 2 & 3: On-Chip Data Reuse and Off-Chip DDR Access (PL↔DDR)
Thirdly, at the PL↔DDR level, we further allocate three sets of on-chip buffers for each acc to
store the LHS, the RHS and the output matrices, so that a tile of LHS with size (X × A × TI) ×
(Y × B × TK) can be reused on-chip for (Z × C × TJ) times. The buffer size and reuse rate for RHS
and output matrices can be calculated in the same way. Besides, the double-buffering technique is
applied to three buffers to overlap the off-chip data movement with the computation. By greatly
exploring data reuse opportunities at multiple levels, our system can sustain high computational
efficiency under limited off-chip bandwidth, i.e., 25.6 GB/s of DIMM-DDR4 on VCK190.

5 CHARM Architecture and CHARM Framework to Compose Multiple Diverse
Accelerators

In this section, we introduce the CHARM architecture in Section 5.1 and provide an overview of
the CHARM framework in Section 5.2. We then discuss each module within the framework from
Section 5.3 to Section 5.5.

5.1 CHARM Architecture
Figure 8 illustrates the CHARM architecture with one or more diverse MM accs in the system and
other kernel accs for non-MM kernels within an end-to-end deep learning application. We partition
the AIE array for multiple MM accs (two in this example). For each MM acc, we design a specialized
DMA module that contains the data transferring control logic and an on-chip buffer according
to the tiling strategy. The different AIE partitions communicate with their corresponding DMA
modules through the PLIO interface and the NOC. We refer to the AIE array, its corresponding
PLIO, and the DMA module collectively as one MM acc design. For each non-MM kernel, e.g.,
transpose, softmax, and layer normalization in BERT and ViT models, we design one acc for each
type of kernel on the PL side. Each non-MM acc contains DMA, computation logic, and local
buffers. For these communication-bound kernels, the design goal is to achieve near-peak off-chip
bandwidth. When running these kernels, since they consume all the off-chip bandwidth, we choose
to sequentially launch these non-MM and communication-bound kernels before or after MM acc(s).
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Fig. 9. CHARM framework overview.

5.2 Python-Based CHARM Automatic Framework Overview
In order to ease the programming effort, we propose a Python-based automatic CHARM frame-
work shown in Figure 9. The CHARM framework takes the application models, platform off-chip
bandwidth profiling, and platform hardware resource constraints as input, performs automated
optimization and code generation, and launches backend compilers to generate the ready-to-run
binaries as output. There are several modules in the CHARM framework: (1) On top of CDSE, CDAC
finds the optimal design with the highest throughput and outputs the workload assignment strategy
as well as the configurable design parameters of each acc. During this process, CDSE optimizes
the placement of the local memory, AIE core, and PLIO ports. It also covers the AIE array tiling
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and PLIO optimization on the AIE side. On the PL side, it determines the tiling, buffer allocation,
and DMA optimization. (2) CRTS takes the layer dependency graph and the workload assignment
strategy from CDAC as inputs. It provides the scheduling strategy of the layers in the application
onto the available accs. (3) CACG takes the configurable parameters generated from CDAC and
the runtime scheduling from CRTS as input. Based on the CDAC and CRTS, it generates all the
needed source code files for AIEs, PL, and host CPUs. CHARM calls the corresponding backend
tools to generate both the hardware bitstream and host binaries. All the components of the CHARM
framework are abstracted into Python APIs as shown in the Python user interface, which greatly
reduces the time for onboard deployment on Versal ACAP.

5.3 CDSE for a Single Acc
DSE Configurable parameters: A, B, C, X, Y, Z in Listing 1. In order to attain optimized throughput for
each diverse acc, we design CDSE, which takes matrix sizes (M, K, and N), optional user-specified
hardware constraints, and a hardware platform off-chip characterization database as inputs and
performs an analytical model-based search. During CDSE, we set the single AIE workloads to 32 ×
32 × 32, 48 × 48 × 48, and 64 × 64 × 64 for FP32, INT16, and INT8, respectively, i.e., TI = TK = TJ =
32, 48, or 64. We achieve over 90% of kernel efficiency for MM, utilize over 75% of the AIE local
memory in this design point, and obtain the CTC ratios of 4, 3, and 2 in FP32, INT16, and INT8
data types, respectively. The outputs of CDSE are the configurable parameters, including A, B, C,
X, Y, Z, that meet all the hardware constraints. The parameters A, B, C determine the numbers of
AIE and PLIO used in the AIE array. X, Y, Z, A, B, C together with pre-fixed parameters TX, TY, TZ
decide the number of utilized on-chip buffers. This optimization problem can be formulated as an
IP optimization problem as shown below. AIEnum, PLIOin, PLIOout and On_chipRAM represent the
user-specified hardware constraints:

max Throughput = M · K · N · 2/TIME (1)
s.t.� × � ×� ≤ AIEnum (2)

Portin ≤ PLIOin,

Portout ≤ PLIOout
(3)

Buff ≤ On_chipRAM (4)

AIE-Array Tiling Selection. Since {A, B, C} are fully unrolled and mapped to the AIE Array, the
multiplication of the unroll factors A, B, and C should be less than or equal to the total number of
AIEs in Equation (2). The number of packet-switch ports is determined by {�, �,�}, and the I/O
reuse mechanism is described in Section 4.3. They should meet the input and output PLIO resource
constraints. The input and output PLIO numbers can be obtained as follows:

Port8= = d� · �/CTCe + d� · �/CTCe
Port>DC = d� ·�/CTCe

(5)

PL Tiling Selection. On-chip PL buffers are allocated to amortize the 46× bandwidth gap from
off-chip to PL and from PL to AIE-Array by increasing the data reuse rate. Equation (6) shows the
sizes of the LHS, RHS, and output buffers, as well as their off-chip to on-chip communication times.
BPD refers to bytes per data, and BW_L,R,O represents the off-chip bandwidths measured from
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bandwidth profiling.

BuffL = (- · � ·) � ) · (. · B · TK) · BPD
BuffR = . · / · � ·� · TK · TJ · BPD
BuffO = - · / · � ·� · TI · TJ · BPD (6)
Buff = 2 · (Buff ! + Buff ' + Buff $ )
TimeL,R,O = Buff !,',$/BW!,',$

Performance Modeling. To calculate the overall execution time, the scheduling of data communica-
tion from off-chip to on-chip and the AIE array computation should be considered. The computation
time for all the on-chip time loops, i.e., Line 6 in Listing 1, can be defined by Equation (7), in which
MAC represents the theoretical MAC operation that one AIE engine can perform in one cycle, and
Eff refers to the actual efficiency that the computation kernel achieves. We consider both single
AIE and AIE array pipeline efficiency (PL↔AIE) here and assign the overall efficiency as 80%. For
the off-chip to on-chip scheduling, as described in Listing 1, the loop order of the outermost loop
is TY→TZ→TX. Thus, the memory access time for LHS and RHS will happen TX × TX × TZ
times in total. The overall execution Time can be calculated by Equation (8). This is an equation for
illustration purposes where we leave out the details on the formulation of time spent storing the
output and prologue and epilogue time in the pipeline.

Time_comp = (- · . · / ·) � ·) ·) �/MAC)/Eff (7)
TIME =<0G ( [TimeL, TimeR, Time_comp]) · ()- ·). ·)/ ) (8)

For any specific shape(s), all the possible configurable parameters will be evaluated in an exhaus-
tive fashion. After CDSE, top-ranked optimized design points will be reported.

5.4 CDAC
Two-Step Search Algorithm in CDAC. To achieve optimized overall throughput when mapping
diverse sizes of MM kernels onto multiple accs, we propose a sort-based, two-step algorithm in
CDAC. In the first step of CDAC, we partition the MM kernels of different workloads within an
input model into multiple groups. The number of groups equals the number of diverse accs, which
is a hyperparameter in CDAC. After the workload partitioning, in the second step, we generate
a resource partition candidate that specifies the resource budget for each acc to be proportional
to the total number of operations from the assigned MM kernel(s). Under the assigned workload
and assigned resources, we search for all valid candidates of configurable parameters (A, B, C, X,
Y, Z) for each acc. We then fine-tune the memory resource partition to generate more resource
partition candidates. After the memory fine-tuning, we generate a new workload partition, redo
the resource partition, and perform a configurable parameter search, which further optimizes the
system throughput for all the accs. We discuss the details of each step as follows.

1st Step: Workload Assignment. To improve the overall throughput of the diverse acc architecture,
we need to properly assign the MM kernels to the accs and ensure they work concurrently with
similar execution times. However, mapping an application with n kernels to num accs suffers
from exponential time complexity as the total mapping search space scales as O(=D<=). To better
scale larger models that contain more kernels, i.e., a larger =, we propose a sort-based algorithm
to partition the workload with reduced time complexity as O(

(
=−1

num−1
)
) = �=−1

num−1. As shown in
Algorithm 1, CDAC first sorts the different shapes of the MM kernels by their number of operations
(Line 4) so that MMs with larger and smaller sizes can be properly divided. Then we divide the
sorted MM kernels into n groups (Lines 5–6). For example, if there are eight different shapes of
kernels that need to be mapped to num = 2 accs, after sorting the kernels, we put one separator
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Algorithm 1: Diverse Accelerator Composing Algorithm

Input: layer[n], bw, hw_sr, num, ubound
⊲ layer[n] represents n layers in an application. bw refers to bandwidth, hw_sr includes
the AIE, PLIO, RAM resources, num refers to the number of accs, ubound is the
hyperparameter for memory tuning
Output: Workload[num], final_Acc[num]

⊲ Workload and final_Acc contain the workload assignment and the hardware
configuration for each acc, respectively.

1: BW ← bw/num_acc
2: HW .RAM [:] ← hw_sr .ram/num_acc
3: final_cycle← inf
4: layer_sort [:] ← sort(layer)
5: for sche in range(�

( n−1
num−1

)
) do

6: partition[:] ← partition(layer_sort [:], num, sche) ⊲ 1st step
7: op_portion[:] ← cnt(partition[:]) ⊲ 2nd step
8: update(HW .AIE[:],HW .PLIO[:], op_portion[:])
9: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])

10: ⊲ Sequentially launch CDSE
11: while tune_cnt ≠ ubound do ⊲ Memory tuning
12: index ← max(cycle[:])
13: update(HW .RAM [:], index) ⊲ Increase the memory of the slowest acc
14: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])
15: if max(cycle[:]) < final_cycle then ⊲ Update optimal point
16: final_cycle← max(cycle[:])
17: final_Acc[:] ← Acc[:]
18: Workload [:] ← partition[:]
19: tune_cnt++
20: Define Acc_search(HW , BW , partition[:]) :
21: for acc in range(num) do
22: CDSE(partition[acc],HW [acc], BW [acc])
23: return Acc[:],Cycle[:]

between any two kernels to separate all kernels into two groups. In total, it gives us �
(8−1
2−1

)
= 7

grouping design choices.
2nd Step: Hardware Resource Partitioning. For each workload assignment, we perform DSE to find

the optimized configurable acc parameters under the partitioned hardware resource constraints,
including the number of AIEs, PLIO, on-chip RAM, and off-chip bandwidth. To minimize the
maximum execution time of all the accs, CDAC assigns the number of AIEs and PLIO constraints
proportional to the total number of operations assigned to each acc (Lines 7–8). For the number
of on-chip RAMs, we first evenly distribute it (Line 2). After sequentially launching CDSE to find
the configuration of every acc once (Lines 9–10), we apply a memory fine-tuning step to optimize
the memory allocation. It finds the index of the acc that consumes the most time (Line 12) and
then tries to explore a better configuration by increasing the memory allocation of this acc while

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 3, Article 51. Publication date: September 2024.



CHARM 2.0: Composing Heterogeneous Accelerators for Deep Learning 51:17

decreasing the memory allocations of others (Lines 13–14). If a better result is found, we update
the global optimal execution cycles and the corresponding acc configuration settings (Lines 15–18).
Note that, in the current model, we assume each acc evenly occupies the off-chip bandwidth (Line
1) and leave the discussion of off-chip bandwidth partitioning for future work.

5.5 CRTS
While the two-step CDAC algorithm provides the solution for workload assignment and hardware
partitioning, the CRTS is proposed to resolve the dependencies among the layers in the application
graphs. By exploring the task-level parallelism, the accs are able to achieve high throughput
simultaneously. In this section, we first mathematically formulate the MIP based problem, which
provides the optimal solutions. Then, to improve the search efficiency, we explain a scalable greedy
scheduling algorithm.

MIP Formulation. Based on the workload assignment and hardware partitioning strategy, CDAC
provides the design with maximum throughput, considering there is no dependency in the ap-
plication graph. Thus, batch-level pipelining and the runtime scheduler are proposed to achieve
optimized throughput and resolve the dependency. We mathematically formulate the problem by
MIP, as shown in Equations (9)–(13), which serves as the oracle solution. In the MIP formulation,
we consider the following factors and variables:

—=D<_10C refers to the number of batches needed to sustain the pipeline, which will be exhaus-
tively searched from 1 to the user-specified upper bound.

—� refers to the application graph, which consists of all the layers.
—�=,< is the binary dependency matrix where �=,< = 1 means that layer< depends on layer =.
—��� refers to all the accs in the system.
—�=,022 is the assignment strategy of each layer on every acc.
—)=,022 is the execution time matrix of each layer on every acc.
—()= denotes the start time of each layer.
—�)= denotes the end time of each layer.

We maximize the throughput of the system under a certain batch by calculating the maximum
end time ()<0G ) of all the layers, as illustrated in Equations (9) and (11). �)= can be formulated by
adding the start time ()= to the corresponding execution time)=,022 × �=,022 , as shown in Equation
(10). The dependency among the layers in the graph is maintained during execution by Equation
(12). Equation (13) guarantees that at each time, one acc will only process one layer in the graph.

<0G8<8I4=D<_10C/)<0G (9)
B .C . �)= = ()= +)=,022 ×�=,022 ,∀= ∈ (�),∀022 ∈ (���) (10)

)<0G = max(�)=),∀= ∈ (�) (11)
�)< ≥ ()=, �=,< = 1,∀(=) ∈ �,∀(<) ∈ � (12)

�)< ≥ ()= >A �)= ≥ ()<
�=,< = 0, �<,022 = �=,022 ,∀(=) ∈ �,∀(<) ∈ �,∀022 ∈ ���

(13)

Scalable Greedy Algorithm. The proposed MIP-based formulation provides the optimal scheduling
solution under the workload assignment strategy and the dependency constraints. However, the
large design space also leads to a very long search time. We then propose a greedy-algorithm-based
fast runtime scheduler that can resolve the dependencies while achieving high throughput under
a different number of batches. Algorithm 2 lists the proposed scheduling algorithm. It takes the
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Algorithm 2: Runtime Scheduling Algorithm

Input: Graph, num, task_pool[task][layer]
Output: Runtime scheduling for each accelerator

1: while (1) do ⊲ Assign ready tasks to corresponding accs
2: for acc in range(num) do
3: if ¬�22 [022] .idle() then
4: Continue
5: for C in range(tasks) do
6: for ; in range(layer) do
7: if task_pool [C] [;] ≠ ∅ ∧ task_pool [C] [;] .valid() then
8: Acc[acc] .assign(task_pool [C] [;])
9: Continue line 2

10: while (1) do ⊲ Update the task_pool according to the dependency graph
11: for acc in range(num) do
12: if Acc[acc] .finish() then
13: task_pool.update(Graph)
14: Acc[acc] .update(idle)

dependency graph, the number of accs, and the layer assignment configuration file generated by
CDAC as input. There are two parallel processes in the greedy CRTS.

The first process continuously tracks to check if there are any idle acc to which we can assign tasks
(Lines 2–3). CRTS traverses the layers assigned to this acc following a first-in-first-out principle
(Lines 5–6). If the layer is still in the task pool, it means that it has not been issued. Suppose all the
preceding layers of the current layer have been executed, i.e., dependency resolved. In that case,
CRTS assigns this valid layer to the corresponding acc (Lines 7–8) and continues to track other
accs (Line 9). The second process keeps track of the status of every acc to see if it has finished the
workload (Lines 12–13) and updates the task pool according to the dependency graph, as well as
changes the status of the acc (Line 14) to idle.

5.6 CACG
After finding the hardware design parameters of optimized designs from CDAC, we implement
CACG, including AIEGen, PLGen, and HostGen, to generate the corresponding source code for
AIEs, PL, and host CPU. AIEGen takes the tiling factors of a single AIE (TI, TK, TJ) and an AIE
Array (A, B, C) as inputs and instantiates the corresponding number of AIE cores. It leverages the
C++-based Adaptive Data Flow (ADF) Graph API [46] to build connections among AIE cores
through the AXI network and connections between the AIE Array and PL through PLIOs. Using
the PL level (X, Y, Z) design parameters, PLGen generates HLS C/C++ code that allocates on-chip
buffers on the PL side and implements the data transfer modules for sending/receiving data to/from
the AIE array. HostGen emits host code based on the Xilinx Runtime Library (XRT) API.

After code generation, CHARM launches the vendor tools, including the AIE compiler and the
v++ compiler, to generate the output object files libadf.a and kernel.xo, which are linked into
one xclbin, i.e., the hardware bitstream of the design. The GCC compiler compiles XRT-API-based
host code into a host program that runs on the ARM CPU for kernel scheduling and system controls.
In terms of usability, the hardware configurations can be automatically handled by code generation
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Table 2. Single AIE MM Comparison under FP32 Data Type

H-GCN [51] CHARM (this work)
Size: M x K x N MACs/Cyc Eff MACs/Cyc Eff Eff gain

16 × 16 × 16 2.34 29.30% 6.18 77.22% 2.64x
32 × 32 × 32 3.64 45.50% 7.57 94.70% 2.08x
64 × 64 × 8 3.64 45.50% 7.54 94.29% 2.07x

We highlight the improvement over prior works in bold italic font.
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Fig. 10. Single AIE MM efficiency on INT8 data type.

and compilation. We also provide separate Python APIs as shown in Figure 9 for (1) launching DSE,
(2) Jinja2-template-based code generation, and (3) backend compilation so that users have more
flexibility in applying our frameworks.

6 Experiment Results
In this section, we first analyze the single AIE efficiency and the single MM acc throughput from
Section 6.1 to Section 6.3. In Section 6.5, we implement different CHARM designs, including one
monolithic MM acc, one specialized MM acc, two diverse MM accs, and eight duplicate MM accs for
four applications: BERT, ViT, NCF, and MLP. All the experiments were conducted on the VCK190
with 230 MHz on the PL and 1 GHz on the AIE. AMD/Xilinx Vitis version 2021.1 is used as the
compilation backend tool. When measuring the power consumption, we iterate each application for
more than 60s and report the average value by employing the board evaluation and management
tool, AMD/Xilinx BEAM [47], and the AMD/Xilinx Board Utility tool, Xbutil [48].

6.1 Single AIE Kernel Efficiency Comparison
In this section, we showcase the efficiency of our single AIE MM computation in different matrix
sizes for FP32, INT16, and INT8. We leverage the AIE intrinsics [49] to program the single kernel
design and obtain the execution cycle of our single AIE design by simulating it on the Versal ACAP
AIE System C simulator [50], a cycle-accurate architecture simulator. As shown in Table 2, our
single AIE can achieve up to 7.57 MACs/cycle and 94.70% peak performance when the MM size
equals 32 × 32 × 32. Compared to the AIE dense MM kernel efficiency reported in H-GCN [51],
our single kernel achieves a 2.26× average efficiency gain for FP32.

We test multiple combinations of matrix sizes for INT16 and INT8 and list three that balance each
dimension well in Figures 10 and 11. In INT8 and INT16 data types, CHARM achieves up to 92.62%
and 98.04% single AIE efficiency. For the whole system design, we choose 32 × 32 × 32, 48 × 48 × 48,
64 × 64 × 64 as our single kernel design for FP32, INT16, and INT8 data types, respectively, as these
shapes achieve high computation efficiency and the total size of LHS, RHS, and output matrices
are within 16 KB so that they fit in the AIE local memory and can be double buffered. CHARM
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Fig. 12. Performance comparison in GFLOPS between onboard measurements and CDSE analytical modeling
estimations for different matrix sizes. The error rates, shown in percentages, indicate that CDSE achieves
high prediction accuracy.

achieves high single AIE efficiency in all the presented data types by applying the optimization
techniques described in Section 4.2. More specifically, CHARM takes into consideration (1) the
different ways of constructing the 3D-SIMD MAC instructions, (2) the data in AIE core reuse with a
limited number of vector registers, (3) the data reuse and layout of the AIE local memory. Finally, for
the example in Section 4.2, according to the profiling results from the AIE compiler, the manually
unrolled 16 8 × 8 × 2 INT8 MAC operations in the innermost loop can be done in 16 cycles, which
means it’s perfectly pipelined.

6.2 Performance of Square MMs on One Monolithic Accelerator
We evaluate the throughput of one monolithic acc design and compare the performance between
the modeling estimation from CDSE and the on-board measurement. We build the monolithic
design by using 384 AIEs and over 83% of on-chip RAM utilization, with the AIE running at 1 GHz
and the PL side at 230 MHz. As shown in Figure 12, the throughput of the one-acc monolithic
design increases as the square MM size increases. While it achieves 4.2 TFLOPS at size 6144, the
throughput at size 64 is only 0.65 GFLOPS. CHARM CDSE is capable of precisely estimating the
onboard execution time with an average estimation error rate of only 2.6%.

We compare the throughput of the MM application implemented on AMD U250 FPGA using the
state-of-the-art systolic-array-based framework AutoSA [22] for FP32, INT16, and INT8 data types.
We reimplement the design with the best configurations reported in the article and measure the
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Table 3. MM Performance and Energy Efficiency Comparison between AutoSA and CHARM

AutoSA [22] CHARM (Ours)
Data Type Float32 INT16 INT8 Float32 INT16 INT8

Frequency (Hz) 300M 300M 300M PL:230M/AIE:1G PL:230M/AIE:1G PL:230M/AIE:1G
DSP/AIE DSP:8333 DSP:8205 DSP:6157 AIE:384 AIE:288 AIE:192
GOPS 930 3410 6950 4179 (4.5x) 10034 (2.9x) 31307 (4.5x)

Power (W) 96.8 84.9 91.2 61.9 64.8 62.7
Eng.Eff (GOPS/W) 9.6 40.2 76.2 67.9 (7.1x) 154.3 (3.8x) 499.2 (6.6x)

We highlight the improvement over prior works in bold italic font.

Table 4. Performance Comparison between Shared Memory and Cascade Stream Connections in AIE
Array under FP32, INT16, and INT8 Data Types

Data Type # of AIEs Matrix Size Shared Memory Cascade Stream Performance Gain

FP32 384 6k*6k*6k 3.4 TFLOPS 4.2 TFLOPS 1.23x
INT16 288 6.75k*9k*9k 7.5 TOPS 10.0 TOPS 1.33x
INT8 192 12k*12k*12k 28.2 TOPS 31.3 TOPS 1.11x

We highlight the improvement over prior works in bold italic font.

corresponding power through the AMD/Xilinx Xbutil tool. While AutoSA runs at 300 MHz, 250
MHz, and 300 MHz for FP32, INT16, and INT8 data types, the PL and AIE of CHARM run at 230
MHz and 1 GHz in all data types. As shown in Table 3, the proposed CHARM on Versal VCK190
single MM acc achieves 4179 GFLOPS, 10034 GOPS, and 31307 GOPS for FP32, INT16 and INT8,
which is 4.5×, 2.9×, and 4.5× faster than AutoSA on U250. In terms of energy efficiency, CHARM
achieves 7.1×, 3.8×, and 6.6× gains respectively.

6.3 Performance Comparison between Shared Memory and Cascade Stream
Connections within an AIE Array

We compare the shared memory with the cascade stream connections when forwarding the output
matrix within the AIE array in different data types, including FP32, INT16, and INT8. The number
of AIEs and size of the matrices are set to the same configuration in each data type as shown in
Table 4. As analyzed in Section 4.3, by applying the register-level fine-grained data transmission
manner, i.e., cascade stream, it achieves higher throughput due to the smaller overhead. The designs
with cascade stream achieve 1.23×, 1.33×, and 1.11× gains on throughput over the one utilizing
shared memory as the intra-AIE connection. Note that the listed results don’t indicate that the
cascade stream will always outperform the shared memory connection for any applications. It is
because of our careful design on a single AIE for MM that makes the behavior of different AIEs
remain almost the same. Thus, our design avoids the cascade FIFO stall and achieves high efficiency.

6.4 Programming Abstraction Analysis of the CHARM Framework
As described in Section 5.6, deploying matrix-multiply based applications on Versal Architecture
involves abundant programming effort to optimize C++-based intrinsics and ADF graph APIs
for AIEs, HLS C/C++ code for PL, and XRT API-based host code for ARM CPU. The CHARM
framework provides architecture abstraction for accurately modeling Versal, automatic DSE for
application mapping, and Jinja2-template-based code generation. CHARM helps to relieve the
burden on domain-specific experts in other areas for accelerating their problems on Versal. Take a
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Table 5. Lines of Code Comparison for a Matrix-Multiple Example between Using
CHARM Framework and Expert Manual Design

CHARM APIs ADF Graph AIE Intrinsic PL HLS XRT Host

16 LoC 800+ 600+ 1000+ 350+

simple matrix-multiply in FP32 as an example. As shown in Table 5, by using the APIs for CDAC,
CDSE, CRTS, and CACG, users only need to write 16 lines of code (LoC) so that the CHARM
framework can automatically generate an overall 170× optimized source code for the ARM host,
PL and AIEs.

6.5 End-to-End Applications
We apply the CHARM framework to four applications: BERT, ViT, NCF, and MLP. All the shapes
of the MM kernels in these models are listed in Table 6. We explore the number of accs from 1
to 8 and showcase the representative CHARM designs, including one monolithic MM acc, one
specialized MM acc, two-diverse MM accs, and eight-duplicate MM accs, for each application.
The one monolithic MM design is described in Section 6.2, which remains the same for all four
applications. It is set as the baseline design for comparisons. All the other MM acc designs are
customized for each application and are designed and implemented using the CHARM framework.
All the designs of the same application use the same non-MM kernels. Table 8 reports the onboard
throughput and power consumption in different acc configurations for all the four applications.

CHARM achieves 1.46 TFLOPS, 1.61 TFLOPS, 1.74 TFLOPS, and 2.94 TFLOPS maximum through-
put for the MMs in BERT, ViT, NCF, and MLP in the FP32 data type. Table 7 shows the time
breakdown for MM, layernorm, softmax, and transpose in the FP32 data type for each end-to-end
application. We highlight the best design(s) for each application in Table 8. For BERT and ViT,
the two-diverse MM accs designs are the best, whereas for NCF and MLP, one-acc designs are
the best. This is because both BERT and ViT have both large and small MMs, whereas MLP has
only large MMs. NCF also has both large and small MMs. However, small MMs with size less than
3072 × 256 × 128 consume less than 0.4% of the total computation, and designs favoring the large
MMs stand out as the best. The eight-duplicate designs are inferior for all the applications due to
insufficient data reuse for each acc. For BERT and ViT, when compared to one monolithic design,
the customization of using one specialized acc design for a specific application provided by CHARM
gives 2.13× and 5.08× gains in energy efficiency (GFLOPS/W), respectively. The additional design
spaces explored by using more than one-acc, with heterogeneous and diverse-shaped accs provided
by the CHARM framework, give us 2.25× and 5.24× extra energy efficiency gains for BERT and
ViT, respectively.

The resource utilization, performance, and energy efficiency results for INT16 and INT8 data
types are demonstrated in Tables 10 and 11. CHARM achieves maximum throughputs of 1.91 TOPS,
1.18 TOPS, 4.06 TOPS, and 5.81 TOPS in the INT16 data type for the four applications.The maximum
throughput achieved by CHARM in the INT8 data type is 3.65 TOPS, 1.28 TOPS, 10.19 TOPS, and
21.58 TOPS, respectively. In these data types, the two diverse MM ACCs designs are the best for
BERT, ViT, and NCF applications. The one specialized design is the best configuration for the MLP
application. Take the INT8 data type as an example. Compared with the monolithic design, our
two-diverse acc designs provided by CHARM have 7.6× and 16.9× improvements in throughput
and 9.0× and 22.8× improvements in energy efficiency for BERT and ViT applications, respectively,
because of the dedicated optimization for small and large layers. The specialized acc works best
for the MLP application, providing 1.9× gains in both throughput and energy efficiency. The results
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Table 6. MM Sizes in BERT, ViT, NCF, and MLP

Model # of layer M K N batch dot size

BERT

4 3,072 1,024 1,024 N/A
1 3,072 4,096 1,024 N/A
1 3,072 1,024 4,096 N/A
1 512 64 512 96
1 512 512 64 96

ViT

1 3,072 3,024 1,024 N/A
1 3,072 1,024 3,072 N/A
1 3,072 1,024 1,024 N/A
1 3,072 1,024 4,096 N/A
1 3,072 4,096 1,024 N/A
2 64 64 64 768

NCF

1 3,072 4,096 2,048 N/A
1 3,072 2,048 1,024 N/A
1 3,072 1,024 512 N/A
1 3,072 512 256 N/A
1 3,072 256 128 N/A
1 3,072 128 64 N/A
1 3,072 64 32 N/A
1 3,072 32 16 N/A
1 3,072 32 1 N/A

MLP
1 3,072 2,048 4,096 N/A
2 3,072 4,096 4,096 N/A
1 3,072 4,096 1,024 N/A

Table 7. Time Breakdown for Different Types of Kernels
in the End-to-End Solutions That Achieves the Highest

Throughput for BERT, ViT, NCF, and MLP

Kernel BERT ViT NCF MLP

MM 57.2 ms 57.7 ms 40.4 ms 119 ms
Layernorm 4.5 ms 4.5 ms 0 0
Softmax 18.7 ms 2.3 ms 0 0

Transpose 5.2 ms 5.2 ms 0 0

of these three applications share the same trend as the FP32 data type. For the NCF application, the
higher parallelism of INT8 data types requires a much larger tile size, e.g., 3072 × 256 × 2048, to
sustain the throughput of the system under the same off-chip bandwidth. Thus, it adds padding to
all layers except the first layer, which has a size of 3072 × 4096 × 2048. By designing two customized
accs for the first layer and the other layers and by carefully overlapping the execution of these two
groups, the diverse acc design outperforms the monolithic design by 2.7x and 2.6x in throughput
and energy efficiency, respectively. The experiments with the INT16 data type show similar trends.
The two diverse design is the best configuration among all the configurations for BERT, ViT, and
NCF applications for the INT16 data type, which achieves 8.7×, 38.0×, and 2.1× energy efficiency
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Table 8. Onboard Throughput and Power Comparisons of Different MM Accs Configurations for BERT,
ViT, NCF, and MLP under FP32 Data Type

App CHARM cfg LUT BRAM URAM DSP AIE GFLOPS Power (W) GFLOPS/W (Ratio)

BERT

One_mono 103,959 (11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 276.8 37.0 7.48 (1x)
One_spe 90,351 (10.04%) 515 (53.26%) 64 (13.82%) 117 (5.95%) 256 (64%) 515.4 32.4 15.91 (2.13x)

Two_diverse 343774(38.20%) 534 (55.22%) 272 (58.75%) 442 (22.46%) 288 (72%) 1464.2 40.7 35.98 (4.81x)
8_duplicate 222,956 (24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 534.2 34.2 15.62 (2.09x)

ViT

One_mono 103,959 (11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 49.5 32.4 1.53 (1x)
One_spe 76,661 (8.52%) 275 (28.44%) 64 (13.82%) 187 (9.50%) 256 (66%) 217.1 28.0 7.75 (5.08x)

Two_diverse 240563(26.73%) 590 (61.01%) 320 (69.11%) 299 (15.19%) 264 (72%) 1609.0 39.6 40.63 (26.60x)
8_duplicate 222,956 (24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 382.2 32.8 11.65 (7.63x)

NCF

One_mono 103,959 (11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1,736.0 45.2 38.41 (1x)
One_spe 103,959 (11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1,736.0 45.2 38.41 (1.00x)

Two_diverse 161,597 (17.96%) 790 (81.70%) 352 (76.03%) 326 (16.57%) 384 (96%) 1,730.9 45.1 38.38 (0.99x)
8_duplicate 222,956 (24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 671.0 35.0 19.17 (0.50x)

MLP

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2,936.7 51.4 57.13 (1x)
One_spe 103,959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2,936.7 51.4 57.13 (1.00x)

Two_diverse 148,158(16.46%) 919 (95.04%) 448 (96.76%) 344 (17.48%) 384 (96%) 2386.1 48.8 48.90 (0.86x)
8_duplicate 222,956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 696.0 35.2 19.77 (0.35x)

We highlight the best design in bold italic font.
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Fig. 13. System implementation layout of the two-diverse MM accs and four non-MM accs for BERT.

gain compared with the one monolithic design. The one specialized acc design stands out for the
MLP application, which has a 1.2× gain in energy efficiency. These gains demonstrate the generality
of CHARM in applying to different data types when composing heterogeneous accs.

We show the implementation layout of the two-diverse MM acc design in the FP32 data type,
i.e., the best design for BERT, in Figure 13. This is also the layout corresponding to Figure 8, which
contains two MM accs and four non-MM communication-bound accs. The hardware resource uti-
lization for each acc is reported in Table 9. The MM acc 0 provides high data reuse and computation
efficiency when calculating large MMs by utilizing 256 AIEs, 53.26% BRAM, and 55.29% URAM. The
MM acc 1 utilizes 32 AIEs, 1.96% BRAM, and 3.46% URAM which provides the needed computation
and communication without resource over-provisioning for small MMs in BERT.

CHARM DSE Efficiency. We use CHARM to perform a sort-based two-step search algorithm in
CDAC and depict design throughput compared to the exhaustive search over the search iteration
number in Figure 14. For BERT, compared to the exhaustive search, CDAC finds the optimal solution
in 170 seconds, whereas the exhaustive search takes 33 mins (#search iterations: 2M vs. 58M) with
MATLAB R2021b on an Intel Core i9-10900X CPU.
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Table 9. Resource Utilization for Each Acc in the Design for BERT with Two MM Diverse Accs, Four
Non-MM Accs

Type REG LUTLogic LUTMem BRAM URAM DSP AIE

MM0+DMA0+buffer 96,790 (5.55%) 91,034 (10.41%) 835 (0.19%) 515 (53.26%) 256 (55.29%) 246 (12.50%) 256 (64%)
MM1+DMA1+buffer 62,415 (3.58%) 94,739 (10.83%) 37,668 (8.48%) 19 (1.96%) 16 (3.46%) 196 (9.96%) 32 (8%)

Layernorm 45,101 (2.58%) 33,939 (3.88%) 4,234 (0.95%) 15 (1.55%) 90 (19.44%) 129 (6.55%) 0 (0%)
Softmax 34,270 (1.96%) 33,623 (3.84%) 2,854 (0.64%) 243 (25.13%) 0 (0%) 151 (7.67%) 0 (0%)

Transpose0 14,217 (0.81%) 6,926 (0.79%) 1,097 (0.25%) 15 (1.55%) 0 (0%) 94 (4.78%) 0 (0%)
Transpose1 33,967 (1.95%) 58,510 (6.69%) 32,512 (7.32%) 15 (1.55%) 0 (0%) 19 (0.97%) 0 (0%)

Table 10. Onboard Throughput and Power Comparisons of Different MM Accs Configurations for BERT,
ViT, NCF, and MLP under INT16 Data Type

App CHARM Cfg LUT BRAM URAM DSP AIE GOPS Power(W) GOPS/W (Ratio)

BERT

One_mono 111,626 (12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 215.0 31.4 6.9 (1x)
One_spe 98,694 (10.97%) 237 (24.51%) 336 (72.57%) 101 (5.13%) 216 (54%) 883.7 30.7 28.8 (4.2x)

Two_diverse 75,451 (8.38%) 602 (62.25%) 448 (96.76%) 160 (8.13%) 120 (30%) 1,913.1 32.0 59.8 (8.7x)
8_duplicate 198,572 (22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 1,371.6 35.1 39.1 (5.7x)

ViT

One_mono 111,626 (12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 34.2 29.3 1.2 (1x)
One_spe 43,928 (4.88%) 429 (44.36%) 0 (00.00%) 77 (3.91%) 120 (30%) 461.0 22.5 20.5 (17.6x)

Two_diverse 72,205 (8.02%) 602 (62.25%) 416 (89.85%) 160 (8.13%) 108 (27%) 1,180.1 26.6 44.4 (38.0x)
8_duplicate 198,572 (22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 747.6 32.8 22.8 (19.6x)

NCF

One_mono 111,626 (12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 1,638.3 40.4 40.5 (1x)
One_spe 125,337 (13.93%) 481 (49.74%) 384 (82.94%) 85 (4.32%) 288 (72%) 2,775.4 34.7 80.0 (2.0x)

Two_diverse 126,478 (14.06%) 826 (85.42%) 384 (82.94%) 162 (8.23%) 288 (72%) 4,056.9 47.1 86.2 (2.1x)
8_duplicate 198,572 (22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 2,432.9 38.4 63.4 (1.6x)

MLP

One_mono 111,626 (12.41%) 885 (91.52%) 384 (82.94%) 91 (4.62%) 288 (72%) 4,855.5 53.0 91.6 (1x)
One_spe 127,847 (14.21%) 481 (49.74%) 384 (82.94%) 85 (4.32%) 288 (72%) 5,807.6 52.0 111.7 (1.2x)

Two_diverse 126,478 (14.06%) 826 (85.42%) 384 (82.94%) 162 (8.23%) 288 (72%) 5,159.1 50.8 101.5 (1.1x)
8_duplicate 198,572 (22.07%) 872 (90.18%) 384 (82.94%) 744 (37.80%) 192 (48%) 2,738.3 35.2 69.8 (0.8x)

We highlight the best design in bold italic font.

Table 11. Onboard Throughput and Power Comparisons of Different MM Accs Configurations for
BERT, ViT, NCF, and MLP under INT8 Data Type

App CHARM Cfg LUT BRAM URAM DSP AIE GOPS Power(W) GOPS/W (Ratio)

BERT

One_mono 115,628 (12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 480.3 33.3 14.4 (1x)
One_spe 80,277 (8.92%) 813 (84.07%) 64 (13.82%) 55 (2.79%) 128 (32%) 2,369.2 26.0 91.1 (6.3x)

Two_diverse 104,609 (11.63%) 730 (75.49%) 240 (51.84%) 160 (8.13%) 120 (30%) 3,649.2 28.0 130.2 (9.0x)
8_duplicate 161,336 (17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 2,292.2 29.0 79.0 (5.5x)

ViT

One_mono 115,628 (12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 75.8 30.3 2.5 (1x)
One_spe 51,685 (5.74%) 557 (57.60%) 0 (00.00%) 55 (2.79%) 64 (16%) 696.0 20.3 34.2 (13.7x)

Two_diverse 95,326 (10.59%) 634 (65.56%) 216 (46.65%) 100 (5.08%) 108 (27%) 1,278.8 22.5 56.9 (22.8x)
8_duplicate 161,336 (17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 942.7 27.0 22.8 (34.9x)

NCF

One_mono 115,628 (12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 4,062.7 41.0 99.1 (1x)
One_spe 108,102 (12.01%) 813 (84.07%) 256 (55.29%) 67 (3.40%) 192 (48%) 4,392.3 32.4 135.5 (1.4x)

Two_diverse 120,120 (13.35%) 858 (88.73%) 384 (82.94%) 122 (6.20%) 160 (40%) 10,187.9 39.9 255.1 (2.6x)
8_duplicate 161,336 (17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 4,203.9 30.7 136.8 (1.4x)

MLP

One_mono 115,628 (12.85%) 662 (68.46%) 388 (83.80%) 71 (3.61%) 192 (48%) 11,283.4 54.7 206.1 (1x)
One_spe 116,320 (12.93%) 669 (69.18%) 384 (82.94%) 67 (3.40%) 192 (48%) 21,579.1 53.9 400.5 (1.9x)

Two_diverse 119,449 (13.27%) 826 (85.42%) 416 (89.85%) 134 (6.81%) 176 (44%) 19,319.0 48.5 398.4 (1.9x)
8_duplicate 161,336 (17.93%) 952 (98.45%) 320 (69.11%) 536 (27.24%) 96 (24%) 4,799.5 31.0 154.7 (0.8x)

We highlight the best design in bold italic font.

Explore the Latency-Throughput Tradeoff in CHARM. As shown in Figure 15, we map four concur-
rent tasks onto the BERT design with two diverse accs. Each task has eight MM kernels, and there
are dependency edges, including 0→6, 1→6, 6→7, 2→7, 7→3→4→5, where x→y means y depends
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Fig. 15. Timeline of four tasks scheduled on 2 accs for BERT.

Table 12. Runtime Scheduling Search Time Comparison between MIP and Greedy Algorithm

# of Tasks 1 2 3 4 5 6 7 8

MIP 0.32 s 0.81 s 1.85 s 3.72 s 24.35 s 638.97 s >1,000 s >1,000 s
Greedy 0.31 ms 0.39 ms 0.49 ms 0.64 ms 0.82 ms 0.95 ms 1.10 ms 1.26 ms
GFLOPS 790.2 1,039.9 1,162.4 1,235.1 1,283.2 1,317.5 1,343.1 1,362.9

on x. The other non-MM communication-bound kernels are not shown in the figure for illustrative
simplicity. It takes 110 ms to finish the 1st task and 234 ms to finish the 4th task. For a one-acc
specialized design, the latency of each task is 162.6 ms. Therefore, we have a design tradeoff, i.e., one
specialized acc design can process fine-grained tasks, whereas a two-diverse accs design requires
coarse-grained tasks to fill the pipeline of the two accs. Compared to the specialized acc design,
with 0.67×, 0.92×, 1.18×, and 1.43× latency for different tasks, we gain 2.8× overall throughput in
return. This illustrates that the CHARM framework allows explorations of the latency-throughput
tradeoff, and users can specify targets to let CHARM generate designs that optimize throughput
while meeting the latency requirement, or vice versa. One thing to mention is that the CRTS phase
can also be combined with the CDAC phase for better latency but similar throughput at the cost
of more search time. In this framework, we propose a solution that targets throughput-oriented
scenarios first, assuming an infinite number of tasks to be processed. Therefore, in the CDAC phase,
we optimize the maximum total execution time of multiple layers assigned to the corresponding
acc, leading to nearly the same execution time on each acc. In the CRTS phase, with enough tasks,
the pipeline in Figure 15 can be fully filled. The throughput under different numbers of tasks are
shown in Table 12.

CHARM RTS Efficiency. We compare the optimized results and search time of two proposed
runtime scheduling algorithms, including the MIP and greedy algorithms, under different tasks
shown in Table 12. We implement the two scheduling algorithms on an Intel Xeon Gold 6244 CPU
using Gurobi 10.0 [52] and Python 3.7. In this experiment, the number of tasks is explored from 1 to
8. The greedy-algorithm-based scheduler finds the solution with the same optimal value provided
by MIP formulation under all these eight cases. However, because of the design space pruning, the
proposed greedy-algorithm-based scheduler requires much less search time. For example, when the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 3, Article 51. Publication date: September 2024.



CHARM 2.0: Composing Heterogeneous Accelerators for Deep Learning 51:27

1x DDR                        4X DDR                      16x 

)sP
OLFG( tuphguorhT

0

1000

2000

3000

4000

5000

6000 One_Mono One_spe 2 duplicate 2 diverse
4 duplicate 4 diverse 8 duplicate 8 diverse

DDR

Fig. 16. Throughput comparison under different off-chip bandwidth configurations from CHARM for BERT.

task size equals eight, we reduce the search time from >1,000 s to 1.26 ms, which has a 7.9×105×
reduction. The gain in search time will be more obvious as the search space grows.

7 Discussion of Architecture Insight and Mapping Insight
By leveraging the strong modeling capabilities provided by the CHARM framework, we explore
performance under different hardware architecture changes (number of AIEs, on-chip storage size,
off-chip bandwidth) to conduct pre-silicon architecture explorations and provide architectural
design insights that could be helpful for future generation devices. Here, we leverage the CHARM
modeling to report throughput for different acc configurations, including 1-, 2-, 4-, and 8-accs in
the system. For each design (except one-acc), we have two variants, duplicate accs or diverse accs.
The explorations help us understand the following research questions:

Q1: Can we benefit from higher off-chip bandwidth?
A1: Yes. Versal would benefit from a higher off-chip bandwidth.
We first explore the performance, assuming the platform has more off-chip bandwidth. We

increase the DDR bandwidth by 4× to simulate multiple DDR banks and by 16× to simulate the
case when we have a high bandwidth memory. As shown in Figure 16, the throughput from the
best design for BERT in each bandwidth configuration rises from 1.48 TFLOPS to 3.34 TFLOPS with
4× bandwidth and to 4.80 TFLOPS with 16× bandwidth. The improvement from 1× to 4× DDR is
within expectation and implies that the designs for BERT are bounded by off-chip bandwidth. The
maximum throughput for 16× is bounded by the system computation throughput at 4.8 TFLOPS,
which is constrained by single kernel computation efficiency (95%) and PL↔AIE efficiency (85%).
Another observation from Figure 16 is that the throughput improvement of multiple accs is larger
than that of the single acc since when the number of accs increases, each acc has less data reuse
and tends to be more bounded by the off-chip bandwidth.

Q2: Can we leverage CHARM in future architectures?
A2: Yes. The last group in Figure 17 implies that as computation and communication parallelism

increase further in the future, there will be a need for more heterogeneous acc architectures, and
CHARM can serve as one of the most promising solutions.

We explore the performance by varying the number of AIEs, the on-chip RAM, and the off-chip
bandwidth. We reduce the number of AIEs to 1/8 of the current AIE array size to simulate the
computation capacity of the previous generation FPGA, where only the PL is equipped with DSPs
and has about 1/8 of the theoretical FP32 peak performance of the Versal ACAP. As shown in
the first group in Figure 17, the performance difference between the minimum and the maximum
under different acc configurations is less than 40%. As the computation parallelism is reduced to
1/8, the waste resulting from the inconsistency between massive parallelism and the small MM
size is mitigated. On the other hand, as shown in the last group in Figure 17, 4-diverse acc stands
out as the best when we increase AIE, on-chip storage, and off-chip bandwidth all by 4×. Simply
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for BERT.

increasing AIEs does not yield significant improvement, whereas increasing all the resources as a
whole does.

Q3: Can CHARM be ported to other architectures?
A3:We can port this to other similar architectures that have a large number of tensor cores (hundreds),

where each tensor core requires high parallelism (matrix-matrix computation) to sustain the throughput.
The GPU V100 has 640 tensor cores, operating at 1.245 GHz. Each tensor core can achieve high

efficiency only when the matrix size exceeds 32 × 32 × 32. When the matrix size is 128 × 128 × 128,
using 4 × 4 × 4 tensor cores (# tensor cores utilization = 10%), each computes 32 × 32 × 32 (each
core utilization = 100%), or using 8 × 8 × 8 tensor cores (# tensor cores utilization = 80%), each
computing 16 × 16 × 16 (each core utilization = 12.5%), when the matrix size is small, the overall
utilization is 10%, which is less than 100%. Only when the matrix is 256 × 256 × 256, the overall
utilization (# tensor cores utilization × each tensor core utilization) is near 100%. However, the shape
of multi-head attention in the transformer model is far less than 256 × 256 × 256. When mapping
such models onto a similar architecture, we can use the CHARMmethodology to create diverse accs;
that is, map multiple MMs and use partial resources for each MM, thereby increasing the overall
utilization. When mapping the Transformers onto a GPU V100, if we have a micro-architecture
feature that allows us to partition the GPU tensor cores into groups, we can potentially achieve a
1.5×–2× throughput gain when using 4 diverse accs compared to 1 acc, which is now what the
GPU programming model is.

Q4: Is it possible to implement Softmax in the AIE array? Can FlashAttention [53, 54] be enabled to
reduce data movement?

A4: The optimization in FlashAttention fuses Softmax with consecutive matrix multiplies to
reduce off-chip access and thus is capable of improving our overall latency. We have two ways
to enable fused MM+softmax: (1) Fuse Softmax in AIE with MM; (2) Fuse Softmax in FPGA using
fine-grained with AIE. When using (1), it incurs 30% extra cycles. When using (2), by using some
LUTs in the PL part, there are no extra cycles.

8 Conclusion
In this article, we propose the CHARM architecture and the CHARM framework to provide a
novel system-level design methodology for composing heterogeneous accs for different MM-based
applications, including BERT, ViT, NCF, and MLP in FP32, INT16, and INT8 data types. CHARM is
capable of automatically generating high-throughput and energy-efficient end-to-end application
solutions. Our experiments show that CHARM achieves 1.46 TFLOPS, 1.61 TFLOPS, 1.74 TFLOPS,
and 2.94 TFLOPS inference throughput for BERT, ViT, NCF, and MLP in FP32 data type. in INT16
data type, CHARM has the maximum throughput of 1.91 TOPS, 1.18 TOPS, 4.06 TOPS, and 5.81
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TOPS for the four applications. The maximum throughput achieved by CHARM in the INT8 data
type is 3.65 TOPS, 1.28 TOPS, 10.19 TOPS, and 21.58 TOPS, respectively.
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