
An Iteratively-refined Dataset for High-Level Synthesis
Functional Verification through LLM-Aided Bug Injection

Lily Jiaxin Wan, Hanchen Ye, Jinghua Wang, Manvi Jha, Deming Chen
University of Illinois Urbana-Champaign

{wan25, hanchen8, jinghua3, manvij2, dchen}@illinois.edu

Abstract—This paper explores the application of Large Language
Models (LLMs) in the domain of High-Level Synthesis (HLS) for hardware
design and verification, focusing on functional verification challenges. The
scarcity of open-source HLS codebases, especially those containing bugs,
poses a significant challenge, as LLMs require extensive datasets for effi-
cient fine-tuning and evaluation. To tackle this, we introduce an innovative
bug injection methodology working with a new dataset that we curated
from a wide range of open-source HLS benchmark suites. This dataset
features over 1,500 designs, with both the version injected with bugs and
the corresponding bug-free version. Our bug injection method synergizes
In-Context Learning (ICL) with Retrieval Augmented Generation (RAG),
and Chain of Thought (CoT). This approach significantly boosts the
dataset’s overall validity rate for single-bug injections. We demonstrate
our solution quality using GPT-4 Turbo for injecting either logic bugs or
non-ideal pragmas (compiler directives) into HLS designs. For logic bugs,
we achieve an 84.8% ratio for valid injection attempts. Furthermore,
our approach maintains an 88.0% dataset validity rate (the valid bug
injection rate). In addition, we also evaluate the quality of HLS pragma
injections (focusing on non-ideal pragmas), and achieve a 74.0% attempt
and an 87.9% valid injection ratio. Compared to brute-force prompting,
our strategy yields a 20.4% and a 54.0% validity improvement for the
bug and non-ideal pragma injection, respectively. The Chrysalis dataset is
accessible at https://github.com/UIUC-ChenLab/Chrysalis-HLS.

Index Terms—Large Language Models, High-Level Synthesis, functional
verification, dataset

I. INTRODUCTION

In the rapidly evolving hardware industry, a notable productivity
gap has arisen, propelled by the escalating complexity of integrated
circuits (ICs) as predicted by Moore’s Law [1] and the limitations
of traditional verification methods. Simulation-based verification, the
industry standard, is highly time-consuming and accounts for about
45% to 55% of the total design cycle [2]. It requires intensive
effort from engineers, making it slow and resource-heavy in hardware
development. This gap is growing due to rising system complexities
and the approaching limits of physical properties.

To address the widening productivity gap in hardware design,
particularly in functional verification, the industry increasingly adopts
innovative solutions. Among these, Large Language Models (LLMs)
have emerged as a significant breakthrough. Their capability to in-
terpret human-generated text and produce contextually relevant and
logically coherent outputs across a broad spectrum of prompts marks
a paradigm shift in the approach to Electronic Design Automation
(EDA) tasks, including functional verification. For instance, Chip-
NeMo [3], a chip-design-specific assistant chatbot fine-tuned from
LLaMa2, utilizes data from NVBugs, bug summaries, design sources,
and documentation for verification, significantly accelerating chip
production processes widely used by hardware engineers. RTLFixer
[4] proposes a framework for rectifying erroneous Verilog code using
existing LLM tools like GPT-3.5, augmented by Retrieval Augmented
Generation (RAG) and ReAct prompting mechanisms. In parallel,
LLMs have also aided in enhancing hardware security by identifying
vulnerabilities through SystemVerilog Assertions (SVA) generated for
Register Transfer Level (RTL) verification [5] [6] [7].

Despite the considerable advancements in employing LLMs for
RTL code verification and analysis, the domain of LLM-aided design
for High-Level Synthesis (HLS) has remained under-explored. HLS
simplifies the design process by automating the conversion of high-
level programming languages, such as C or C++, into RTL code
guided by compiler directives known as pragmas [8] [9] [10] [11].
These directives are specific to HLS to optimize the design, reduce
latency, improve throughput performance, and reduce area and device
resource usage of the resulting RTL code [12]. Operating at a more
abstract level, HLS presents an opportunity to significantly shorten
the design and verification cycle, thereby boosting overall design
productivity [13] [14]. However, there remains a notable absence of
datasets geared specifically towards HLS functional verification [15]
[16]. This paper seeks to bridge this gap by introducing a new dataset,
the most comprehensive compilation of HLS buggy code available to
date. This dataset is meticulously curated to empower researchers to
evaluate and fine-tune HLS-specific verification tools, representing a
pivotal advancement in harnessing LLMs for HLS code verification.
The key contributions of our work include the following:

• Build a new flow that leverages LLMs for injecting either logic
bugs or non-ideal pragmas into a working HLS design.

• Leveraging this new flow, we create a new dataset: an extensive
compilation of over 1,500 function-level designs, each containing
one of 8 realistic logic bugs or one of 9 non-ideal pragmas
practices, sourced from 13 open-source HLS benchmarks. This
dataset contains both the version injected with bugs and the
corresponding bug-free version, serving as a valuable asset for
training domain-specific LLMs that can help engineers to debug
their HLS code, advancing automation in code verification.

• Design custom prompts for GPT-4 Turbo to generate EDA-
standard-compliant buggy codes, together with a novel methodol-
ogy combining In-Context Learning (ICL), Retrieval Augmented
Generation (RAG), and Chain-of-Thought (CoT) to enhance
dataset quality. This approach resulted in a 16.5% and 32.2%
enhancement for the ratio of valid bug injection attempts, indicat-
ing the percentage of bug or non-ideal pragma injections passing
automatic checks. Additionally, our approach achieves a 20.4%
and 54.0% validity improvement for bug or non-ideal pragma
injection, respectively, through a manual validation process.

• Provide insights into the effectiveness of RAG, ICL, and CoT
for HLS bug injection tasks. The combination of RAG and
ICL equips the LLM with contextually relevant and tailored
examples to tackle HLS-specific challenges. Meanwhile, CoT
shows significant effectiveness in managing complex tasks such
as complicated pragma insertions.

II. DATASET COLLECTION

During the dataset development, we highlight code issues that are
particularly intractable as they cannot be detected by compilers and
present significant debugging challenges during the HLS design phase.979-8-3503-7608-1/24$31.00 ©2024 IEEE

A. HLS Designs Collection

Building upon our comprehensive effort, the dataset aggregates a
wide range of synthesizable HLS applications sourced from esteemed
projects including: CHStone [17], FINN [18], GNNBuilder [19],
H.264 [20], HLS4ML [21], MachSuite [22], Open-Source-IPs [23],
Polybench [24], Rosetta [25], Vitis HLS introductory examples [26],
Vitis libraries [27], Tacle-Bench [28] and HIDA [29]. Our dataset,
emphasizing function-level tasks, comprises over 1,500 HLS function-
level designs from reputable sources. In constructing the dataset, we
thoroughly addressed the complexities of HLS functions, including
header files or function calls as shown in Fig. 3 in the appendix.

B. Bugs and Non-idealities Simulation

TABLE I: Logic bug types with corresponding description

Type Bug Description

OOB Out-of-bounds array access
INIT Uninitialized variable access
SHFT Bit shift by an out-of-bounds amount
ZERO Variable with a nonzero value initialized to zero
INF An infinite loop due to incorrect loop termination
MLU Errors in manual loop unrolling, omitting an iteration
BUF Copying from the wrong half of a split buffer
USE Unintended sign extension

TABLE II: Non-ideality types with corresponding pragmas and descrip-
tion

Type Pragma Non-ideality Description

APT array partition Array partition type mismatch
FND array partition Factor not divisible
DID array partition Dim incorrect dimension
DFP dataflow Dataflow misalignment
IDAP interface Incorrect data access pattern
RAMB interface Random access to the M axi interface

resulting in non-burst AXI read/write
SMA interface Scalar values mapped to array interfaces
AMS interface Array value mapped to scalar interfaces
MLP pipeline Multi-level pipelining

In this section, we have delineated imperfection types into two main
categories: logic bugs and pragma non-idealities. The classification of
logic bugs is based on the framework introduced by Campbell et al.
[30]. Meanwhile, we present a novel categorization for pragma non-
idealities, emphasizing the degradation of non-ideal pragma injections
on hardware performance. The specific types of logic bugs and pragma
non-idealities are detailed in Tables I and II, respectively.

III. DATASET CONSTRUCTION

This section explores dataset construction using advanced LLM
techniques like Chain of Thought (CoT), In-Context Learning (ICL),
and Retrieval-Augmented Generation (RAG). After providing an
overview of these techniques, we delve into our dataset construction
framework, demonstrating their application.

A. Brief Introduction to ICL, RAG and CoT

ICL, RAG, and CoT represent pivotal techniques in enhancing
the performance of LLMs and mitigating the issue of hallucinations,
ensuring the generation of more reliable and contextually relevant
content. ICL harnesses the LLM’s ability to learn directly from
the examples embedded within the prompt, allowing it to adapt its
responses that align closely with the specific examples of a given task
[31]. RAG targets on overcoming the inherent challenges LLMs face

Bug Types

HLS Source Code

Prompt
Generator

Input

Bug Injection

Code
Generator

GPT-4 HLS Source
Code(w/ specific

bugs)

Output

Our Dataset

Automatic
Check

Codeline Checker

Manual Check

Engineers

HLS Source Codes

Bug Injections

RAG Database

Top-k bug-injection examples

Bug Type Checker

Maximal
Marginal
Relevance
(MMR)

Our Dataset

Fig. 1: Overview of Dataset Construction and Iterative Upgrade Process:
The dataset is generated from and contributes to the development of the
RAG database, allowing iterative enhancements through manual verifica-
tion and correction of generated code with bugs.

with knowledge-intensive tasks [32]. It integrates external knowledge
by dynamically retrieving relevant information during the generation
process. It enriches the model’s capability by integrating external
knowledge sources into the generation process, dynamically retriev-
ing and incorporating relevant information. The CoT methodology,
in particular, enhances this framework by prompting the model to
articulate intermediate steps or reasoning paths [33]. This approach
aids in solving complex problems more effectively.

Our methodology utilizes RAG to select pertinent HLS source
codes and adds the corresponding bug-injection examples to the
prompt for ICL training. In our CoT approach, we employ two main
strategies: integrating bug injection steps into the prompting process
and prompting the LLM to not only introduce bugs but also provide
commentary on the rationale behind its implementation choices.

B. Framework of Dataset Construction

Our dataset construction framework, as shown in Fig. 1, inte-
grates RAG, ICL, and CoT methodologies. Initially, RAG is used
to identify the top-k most relevant HLS source codes and associated
bug-injection examples from the RAG database. These examples are
then integrated into prompts using the ICL approach, with CoT
methodology incorporated to enhance the prompt’s structure. Upon
submitting these prompts to an LLM, an automatic check is conducted
to prune out invalid attempts. Further refinement is achieved through
manual verification, where a sample of the outputs is examined by
hardware engineers to assess the dataset’s validity. Valid examples
with bug description alignment are subsequently added to the RAG
database for ongoing enhancement. The following sections detail each
component of this framework, outlining their roles and contributions
to the dataset’s construction.

1) RAG Database: The RAG database forms the foundation of
our work, containing a vast collection of HLS source codes and
valid bug injection examples. This database is compiled through a
dual approach: firstly, by incorporating bug injection generated by
the LLMs and subsequently verified through automatic and manual
checks, and secondly, by integrating bug injection manually curated
by human engineers. The latter one is very important for the LLMs’

production on those complex bugs difficult for LLM to generate. Then
the codes and bug injection will be further leveraged by RAG to do
ICL prompting. In specific, our approach using algorithms to search for
the most k relevant HLS source codes. Guided by Maximal Marginal
Relevance (MMR), this process ensures the selection of pertinent and
diverse examples, optimizing relevance and minimizing redundancy.

2) Prompt Generator: The prompt template has been meticulously
crafted to include five critical sections—Context, Requirement, Steps,
Examples, and Complementary Rules—to ensure the accurate genera-
tion of buggy code. Detailed explanations of these components, along
with illustrative examples, are provided in Part B of the appendix.

3) Automatic Check: Automatic check first verifies the bug
injection being correctly cross-referenced and aligned with the
corresponding line in the original HLS code and adhering to structural
rules before bug injection. These rules are designed to exclude bug
injections where pragmas are introduced outside of function bodies.
Even though the automatic check is passed, it does not mean that it is
always a valid bug. For example, consider an attempted out-of-bound
bug injections where the code line ’if (dataSize > 0 &&
dataSize < 1 + MIN_BLK_SIZE) rawBlockFlagStream
<< true;’ modified to ’if (dataSize > 0 && dataSize
<= MIN_BLK_SIZE) rawBlockFlagStream << true;’ in
the design inputBufferMinBlock. Although the original code line
exists in the original design and it would pass the automatic check, it
does not alter the condition’s functionality or lead to any out-of-bound
variables. Therefore, such a modification cannot be considered a valid
bug in this case.

4) Manual Check: Due to the vast scale of the dataset, a com-
prehensive review by human engineers is infeasible, necessitating a
random sampling of LLM-generated solutions. These selected bug
injections undergo a rigorous manual evaluation by experts, who assess
them based on their functional alignment with the described bug
and whether each pragma non-ideality injection leads to performance
degradation. Thus, following a positive manual check, it can ensure
a 100% guarantee that the bug is valid. This methodology not only
enhances the dataset’s integrity but also contributes to the enrichment
of our RAG database with valid and diverse cases, thereby amplifying
the RAG’s effectiveness.

IV. EVALUATION

A. Evaluation Metric

This subsection introduces three crucial metrics for evaluating
LLMs’ effectiveness in bug injection within HLS source code.

1) Bug Injection Ratio (Ratio1): This ratio evaluates LLMs’ effi-
ciency in embedding bugs into HLS codes, calculated as the number
of LLMs’ successful bug injection divided by their total bug injection
attempts. ”Successful bug injection” happens when LLMs integrate a
designated bug type into HLS code. ”Total bug attempts” encompass
all instances where LLMs try to inject a bug.

2) Ratio of Valid Bug Injection Attempts (Ratio2): This ratio
measures the precision of bug injection, calculated as the number of
bugs after automatic check divided by the total number of attempts.
This metric ultimately determines the dataset’s final size.

3) Ratio of Successful Bug Injection (Ratio3): This metric mea-
sures the percentage of bug injections that, upon manual review, are
confirmed to function as intended within the code’s specific context,
leading to incorrect results for logic bugs or performance degradation
for pragma non-idealities.

4) Validity: To evaluate the actual validity of correct bug injections
over the number of injection attempts using our sampling data, we
calculate the metric using the following formula:

Validity =
∑

bug types (Ratio3)/
∑

bug types (Ratio2).

B. Experiments

We conducted various experiments to explore the capabilities of
LLM techniques. These experiments, designed as ablation studies,
focused on single-bug injection scenarios to precisely evaluate the
impact of these techniques on various bug types. All experiments
were performed using GPT-4 Turbo (specifically gpt-4-0125-preview)
via OpenAI APIs [34], with the text-embedding-ada-002 API for
MMR embedding. We set the GPT-4 Turbo temperature to 0.7 mostly,
using a k=4 setting for ICL. For complex bugs like RAMB and
IDAP, the temperature was reduced to 0.2 and 0.4 respectively for the
ICL+RAG+CoT strategy to enhance validity while reducing creativity.

We manually reviewed approximately 450 bug injection instances in
all for Ratio3 calculations. For the experimental phase using Baseline
Prompting, we employed a brute-force approach to prompt genera-
tion, establishing a foundational framework for subsequent refinement.
Meanwhile, for Prompting with ICL+RAG, we developed a compre-
hensive database with 280 cases using the ICL and RAG techniques.
This database includes manually verified cases and those crafted by
hardware engineers to address challenging bugs. When employing
Prompting with ICL+RAG+CoT, we expanded the database to 459
cases and improved the approach by integrating CoT techniques,
incorporating bug-injection steps in prompts, and requiring comments
in both the database and bug-injection outputs. However, we observed
that different types of bugs often require different handling strategies,
which is why we use two distinct approaches. However, different types
of bugs often require different strategies, which is why we use two
distinct approaches. Adding CoT can sometimes introduce complexity
that leads to overfitting or obscures simpler bug patterns, making it less
effective for certain bugs. Finally, we employed hybrid bug injection
strategies combining the above two tailored to different bug types
based on validity results, further enhancing the quality of the dataset.

C. Analysis

1) Analysis on Prompting Technique Effectiveness: The evaluation
results of injecting one bug or non-ideal pragma for each type is shown
in Fig. 2 and Table III. In Figure 2, bar plots illustrate the ratios, with
the red and blue lines representing the improvements in Ratio2 and
Validity, respectively, over the baseline across various bug types. Table
III presents an average evaluation of the different prompting strategies
across all bug types. Our approach with ICL+RAG+CoT brings a
15.7% and a 52.5% validity improvement for the bug and non-ideal
pragma injection, respectively, compared to brute-force prompting.
Also, this approach resulted in an 18.1% and 34.1% enhancement
for the ratio of valid bug injection attempts.

Integrating RAG-selected examples into the ICL framework sig-
nificantly improves the LLM’s understanding and problem-solving
capabilities in the HLS domain. This approach boosts the logic bugs’
Ratio2 by 19.7% and their Validity by 12.9%. Additionally, it enhances
the Ratio2 for pragma non-idealities by 26.7% and improves their
Validity by 27.5%. This innovative combination ensures that the LLM
is equipped with examples that are not only relevant but also carefully
tailored to address specific coding challenges, markedly enhancing its
practical comprehension and problem-solving skills.

The adoption of CoT instructs the model incrementally, guiding it
towards step-by-step actions to achieve reasonable outcomes. When
comparing the efficacy of models prompted with ICL+RAG+CoT
against those prompted with ICL+RAG, the inclusion of CoT offers
a marginal improvement—less than 3%—for logic bugs in Validity.
Nonetheless, CoT notably enhances the injection of bugs for pragma
non-idealities, with a 7.4% increase in Ratio2 and a 25.0% enhance-
ment in Validity. The discrepancy likely stems from the fact that the

OOB
IN

IT
SH

FT IN
F

MLU BUF
ZE

RO
USE APT FN

D
DID DFP

ID
AP

RAMB
SM

A
AMS

MLP
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

s

Ratio1
Ratio2
Ratio3

(a) Evaluations for Baseline Prompting

OOB
IN

IT
SH

FT IN
F

MLU BUF
ZE

RO
USE APT FN

D
DID DFP

ID
AP

RAMB
SM

A
AMS

MLP
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

s

Ratio1
Ratio2
Ratio3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
pr

ov
em

en
ts

Ratio2 Improvement(vs baseline)
Validity Improvement(vs baseline)

(b) Evaluations for Prompting with ICL+RAG

OOB
IN

IT
SH

FT IN
F

MLU BUF
ZE

RO
USE APT FN

D
DID DFP

ID
AP

RAMB
SM

A
AMS

MLP
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

s

Ratio1
Ratio2
Ratio3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
pr

ov
em

en
ts

Ratio2 Improvement(vs baseline)
Validity Improvement(vs baseline)

(c) Evaluations for Prompting with ICL+RAG+CoT

Fig. 2: Comparison of the evaluation ratios among Baseline Prompting,
Prompting with ICL+RAG, and Prompting with ICL+RAG+CoT
non-ideal pragma insertions are more complex and difficult than logic
bug injection. CoT excels in decomposing tasks into simpler steps to
achieve a reasonable result. However, its effectiveness is less apparent
for simpler tasks, where the existing capabilities of LLMs saturate
to tackle the problem, and the additional decomposition does not
contribute to improved outcomes.

2) Task Complexity vs. LLMs’ Capability: GPT-4 Turbo’s profi-
ciency in generating realistic logic bugs is significantly higher than its
ability to handle pragma non-idealities without applying any technique,
primarily due to its extensive exposure to C code during training.
This background enables it to identify and manipulate common logic
bug patterns effectively. However, its performance on pragma non-
idealities is less robust, hindered by limited training on HLS pragmas
and the nuanced complexity of these pragmas, including understanding
their specific requirements and identifying precise injection sites.

Despite these challenges, the ICL+RAG+CoT strategy has led to

TABLE III: Average Evaluation on Different Prompting Strategies

Prompting Strategy Ratio1 Ratio2 Ratio3 Validity

Baseline (Logic) 73.5% 68.3% 46.2% 67.6%
ICL+RAG (Logic) 96.3% 88.0% 70.8% 80.5%
ICL+RAG+CoT (Logic) 93.8% 86.4% 72.0% 83.3%
Hybrid (Logic) 93.3% 84.8% 74.6% 88.0%
Baseline (Pragma) 77.1% 41.8% 14.2% 33.9%
ICL+RAG (Pragma) 97.5% 68.5% 42.1% 61.4%
ICL+RAG+CoT (Pragma) 96.0% 75.9% 65.6% 86.4%
Hybrid (Pragma) 94.1% 74.0% 65.0% 87.9%

a marked improvement in handling pragma non-idealities, outpacing
gains seen in logic bug injection. This strategy leverages context-rich
examples and external knowledge to enhance the LLM’s understand-
ing of pragma non-idealities, effectively compensating for its initial
limitations. This demonstrates the adaptability of LLMs to specialized
tasks when provided with sufficient and relevant context.

V. FUTURE WORK

Our dataset presents a promising platform for evaluating the profi-
ciency of existing LLMs in HLS bug localization. Our research out-
lines three primary directions for future exploration: Firstly, multiple
challenges are discovered in using LLMs to inject certain types of
bugs. Notably, bugs related to operator precedence misunderstandings
are difficult for human evaluators to assess due to sparse code patterns
and the inherent complexity of creating representative examples from
scratch. Additionally, misunderstandings and pragma non-idealities
(e.g., inner loops not fully-unrolled) are difficult in bug injection, due
to either the sparsity of examples in existing codebase or the difficulty
of creating representative examples from scratch. These categories
need further investigation to develop refined inclusion methodologies.
Secondly, developing an automated performance estimation workflow
could expedite the identification and elimination of pragma non-
idealities, thereby improving the dataset’s quality and quantity. Finally,
we aim to fine-tune an open-source LLM by using the dataset. This
model would not only identify anomalies but also offer potential fixes,
serving as a powerful tool for hardware engineers. Our approach could
further enhance the debugging process, leveraging the specificity of
the dataset to address the unique challenges of HLS code development.

VI. CONCLUSION

The introduction of the dataset marks a pivotal advancement in
utilizing LLMs for HLS bug localization to significantly enhance
debugging and verification processes. By employing GPT-4 Turbo
and integrating methodologies of ICL, RAG and CoT, this work
demonstrates a notable improvement in injecting compiler-challenging
intent bugs, achieving an 84.8% ratio for valid bug injection attempts
and an 88.0% validity — an increase of 16.5% in valid attempts
and 20.4% in the valid injection ratio. Moreover, the work records
an advancement in addressing pragma non-idealities, with a 74.0%
ratio for valid injection attempts and an 87.9% validity — an increase
of 32.2% for attempts and 54.0% for validity. This work not only
demonstrates the benefits of the dataset but also outlines the potential
future enhancements of the dataset and its applications in fine-tuning
LLMs for HLS bug localization and correction.

ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor Research
Corporation (SRC) under the grant number 2023-CT-3175, and by
the AMD Center of Excellence at UIUC. We would also like to
extend our appreciation to Xiaofan Zhang from Google for the valuable
discussions and insights provided.

REFERENCES

[1] R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[2] H. Foster, “Part 8: The 2020 wilson research group functional verification
study,” https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/
part-8-the-2020-wilson-research-group-functional-verification-study/,
2021.

[3] M. Liu et al., “Chipnemo: Domain-adapted llms for chip design,” arXiv
preprint arXiv:2311.00176, 2023.

[4] Y. Tsai et al., “Rtlfixer: Automatically fixing rtl syntax errors with large
language models,” arXiv preprint arXiv:2311.16543, 2023.

[5] Orenes-Vera et al., “Using llms to facilitate formal verification of rtl,”
arXiv e-prints, pp. arXiv–2309, 2023.

[6] R. Kande et al., “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[7] X. Meng et al., “Unlocking hardware security assurance: The potential
of llms,” arXiv preprint arXiv:2308.11042, 2023.

[8] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level synthesis:
Promises and challenges,” in 2011 9th IEEE International Conference on
ASIC, 2011, pp. 1102–1105.

[9] R. Kastner et al., “Parallel programming for fpgas,” arXiv preprint
arXiv:1805.03648, 2018.

[10] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “xpilot: A
platform-based behavioral synthesis system,” SRC TechCon, vol. 5, p. 54,
2005.

[11] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-
M. W. Hwu, “Fcuda: Enabling efficient compilation of cuda kernels onto
fpgas,” in 2009 IEEE 7th Symposium on Application Specific Processors.
IEEE, 2009, pp. 35–42.

[12] A. M. Devices, “Vitis high-level synthesis pragmas guide,” https://docs.
amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas, 2023.

[13] H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, and
D. Chen, “Scalehls: A new scalable high-level synthesis framework
on multi-level intermediate representation,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2022, pp. 741–755.

[14] A. Papakonstantinou, Y. Liang, J. A. Stratton, K. Gururaj, D. Chen, W.-
M. W. Hwu, and J. Cong, “Multilevel granularity parallelism synthesis
on fpgas,” in 2011 IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 2011, pp. 178–185.

[15] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and
Z. Zhang, “Fpga hls today: successes, challenges, and opportunities,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 4, pp. 1–42, 2022.

[16] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level synthesis:
Promises and challenges,” in 2011 9th IEEE International Conference on
ASIC. IEEE, 2011, pp. 1102–1105.

[17] Y. Hara et al., “Chstone: A benchmark program suite for practical c-based
high-level synthesis,” in 2008 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2008, pp. 1192–1195.

[18] Y. Umuroglu et al., “Finn: A framework for fast, scalable binarized neural
network inference,” in Proc. of FPGA, 2017.

[19] S. Abi-Karam et al., “GNNBuilder: An Automated Framework for
Generic Graph Neural Network Accelerator Generation, Simulation, and
Optimization,” arXiv preprint arXiv:2303.16459, 2023.

[20] X. Liu et al., “High level synthesis of complex applications: An H. 264
video decoder,” in Proc. of FPGA, 2016.

[21] F. Fahim et al., “hls4ml: An open-source codesign workflow to em-
power scientific low-power machine learning devices,” arXiv preprint
arXiv:2103.05579, 2021.

[22] B. Reagen et al., “MachSuite: Benchmarks for accelerator design and
customized architectures,” in Proc. of IISWC, 2014.

[23] X. Liu et al., “HLS based Open-Source IPs for Deep Neural Network
Acceleration,” https://github.com/DNN-Accelerators/Open-Source-IPs,
2019.

[24] J. Karimov et al., “Polybench: The first benchmark for polystores,”
in Performance Evaluation and Benchmarking for the Era of Artificial
Intelligence: 10th TPC Technology Conference, TPCTC 2018, Rio de
Janeiro, Brazil, August 27–31, 2018, Revised Selected Papers 10, 2019.

[25] Y. Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite
for software programmable fpgas,” in Proc. of FPGA, 2018.

[26] Xilinx, “Vitis-HLS-Introductory-Examples,” https://github.com/Xilinx/
Vitis-HLS-Introductory-Examples, 2023.

[27] Xilinx, “Vitis libraries,” https://github.com/Xilinx/Vitis Libraries, 2019.

[28] Tacle, “Tacle Bench,” https://github.com/tacle/tacle-bench, 2017.
[29] H. Ye et al., “Hida: A hierarchical dataflow compiler for high-level

synthesis,” arXiv preprint arXiv:2311.03379, 2023.
[30] K. A. Campbell, “Robust and reliable hardware accelerator design through

high-level synthesis,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2017.

[31] S. Min et al., “Rethinking the role of demonstrations: What makes in-
context learning work?” arXiv preprint arXiv:2202.12837, 2022.

[32] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive
nlp tasks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 9459–9474, 2020.

[33] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[34] OpenAI, “Openai models api,” https://platform.openai.com/docs/models,
2024.

APPENDIX

A. Benchmark-to-design Conversion

Figure 3 illustrates the conversion process from benchmarks in
HLS projects to function-level designs. Each function is treated as
an individual design, and the file includes all functions that the design
invokes.

void example(mystream&
A, mystream& B){
tmp_a = A.read();…
B.write(tmp_b);
}
void
write(hls::burst_maxi<dou
t_t> RES, dout_t x_aux[N],
dout_t y_aux[N]){
…}
void read(A* a_in, A
buf_out[NUM]) {
…}

Benchmark
void example(mystream&
A, mystream& B){
tmp_a = A.read();…
B.write(tmp_b);
}
void
write(hls::burst_maxi<dout
_t> RES, dout_t x_aux[N],
dout_t y_aux[N]){
…}
void read(A* a_in, A
buf_out[NUM]) {
…}

void
write(hls::burst_maxi
<dout_t> RES, dout_t
x_aux[N], dout_t
y_aux[N]){
…}

void read(A* a_in, A
buf_out[NUM]) {
…}

Function-level Designs

Fig. 3: An example of conversion from original benchmarks to the
function-level designs we used for bug injection.

B. Prompting Examples

Figure 4 illustrates the methodology for inducing an Out-of-Bounds
(OOB) error within the ”gemm 4096” function, employing distinct
color codes to delineate the advancement of the prompting mechanism.

1) Baseline Prompting: This approach utilizes the segment in blue
boxes, focusing on a straightforward prompt. The key elements include
Context, Requirement, and Complementary Rules.

2) Prompting with ICL+RAG: This technique expands upon the
baseline by incorporating both the blue and orange boxes, integrating
ICL and RAG methodologies for enhanced context understanding.
It adds the Steps part and another complementary rule compared to
baseline prompting.

3) Prompting with ICL+RAG+CoT: The most comprehensive strat-
egy, this method amalgamates the blue, orange, and green boxes. It
includes ICT, RAG, and Chain of Thought (CoT) prompting, offering
a multi-faceted approach to error introduction. It includes the Example
part in addition to what is used in ICL+RAG prompting.

I'm exploring High-Level Synthesis (HLS) programming and want to
understand common pitfalls, especially the issue of out-of-bounds array
access for arrays (OOB), which can subtly affect synthesized hardware's
performance and functionality. To deepen my understanding, I'd like to
create examples that illustrate these mistakes.

The steps to inject a OOB bug into the code are as follows:
- Step 1: Identify an array that's used in a loop or conditionally accessed.
- Step 2: Find the loop or condition where the array is accessed.
- Step 3: Intentionally set the loop's range or the condition to exceed the
array's declared size.

Could you help me by injecting a plausible bug involving OOB into an
example HLS code snippet? Please format your response in a JSON
structure with the following specifications:
- "Error Size": The number of errors you've introduced.
- "Error Specification": An array containing objects with "Error Type”

, "Original Code“, “Faulty Code” and "Faulty Code Comment“.
Here is the HLS source code of the function gemm_4096:
\"\"\" void gemm_4096(float v0, float v1, float v2[4096][4096], float
v3[4096][4096], float v4[4096][4096]) { //L2…\"\"\“
Can you demonstrate an instance within this function where a mistake of
OOB could inadvertently be made?

To make my request clearer, here are some examples reply of what I'm
looking for:
Bug Examples here…

1. Ensure the example of the error is plausible and could be easily made
by a human.
2. If no error is possible in the provided code, simply respond with
{"Error Size": 0}.
3. The error may occur in either the main function or a function it calls.
4. The error only appears inside the function.
5. The 'Original Code' must be uniquely identifiable within the source
code file for search purposes.

6. The "Faulty Code Comment" should briefly describe both the
reasoning and the evidence supporting a specific implementation choice,
clearly explaining why the approach was taken in one or two sentences.

Fig. 4: An illustration showcasing the procedure for directing GPT-4
to introduce an Out-Of-Bounds (OOB) error into the ’gemm 4096’
source function. The color-coded representation signifies the progres-
sive sophistication of the prompting mechanisms employed, starting
from basic to more complex, reflective of an iterative refinement in
error injection techniques.

