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Abstract 
In this paper, we propose an instruction-based adaptive 

CNN accelerator named IDLA for fast and efficient 

deployments of CNN models on FPGA. The hardware 

engine of IDLA accelerates the computation of CNN 

models by adaptively using different functional modules. 

Following a modular design fashion, the hardware engine 

is attentively designed to enable all these modules to work 

concurrently and to improve the usage efficiency of on-

chip resources. Besides, layer fusion and weight reuse 

strategies are applied to reduce data access to DDR. 

Coordinating with this hardware engine, a network parser 

is developed to automatically analyze different CNN 

models to generate an optimal scheduling scheme for each 

CNN model. Moreover, a customized instruction set with 

moderate-granularity is designed to further enhance the 

flexibility in joint-optimization between software and 

hardware. We build the IDLA on a Xilinx VU9P FPGA. 

The experimental results show that our proposed IDLA 

accelerator has reached an overwhelming performance of 

168.76 (ResNet18) and 277.63 (VGG16-SVD) GOPS, 

and an DSP efficiency of 1.62 Ops/DSP/cycle (VGG16-

SVD), much better than existing works [9] and [10]. 

 

1. Introduction  
In recent years, convolutional neural networks (CNNs) 

have replaced traditional algorithms in many application 

fields such as image classification, target tracking, face 

detection and etc. Meanwhile, being a field programmable 

hardware platform, FPGA helps to shorten development 

cycle under the assistance of high-level synthesis tools, 

leading to a soaring demand of FPGA-based accelerators 

in both cloud and edge computations. 

CNN accelerators on FPGA can be generally classified 

into two categories: specialized and general purposed. 

Specialized accelerators, with customized circuit design 

in calculating units, memory access and data flow, can 

provide a significant accelerating performance [1,9]. But 

they usually have a big limitation in their adaptability to 

different CNN algorithms, which largely prevents them 

from being used in various scenarios. Based on these 

specialized accelerators, more recent researches have 

placed their efforts on more flexible and general-purposed 

solutions. Ma Y, et al. [2] use a purely modularized design 

to fulfill quick deployments of different deep residual 

CNNs. But their work ignores the optimization of data 

flow and memory access, which unavoidably leads to a 

low model adaptability and a low computing efficiency. 

VTA [3] takes another approach of placing its emphasis 

on system stack design. By using a model compiler, it has 

a high generality for various kinds of CNN models. 

However, the full functional design in its hardware 

processing units and data access scheme makes it difficult 

to provide with a competing accelerating performance. 

To tackle these problems, in this paper, we present a new 

CNN accelerator named IDLA (Instruction-based Deep 

Learning Accelerator), which automatically analyzes the 

network structures of different CNN models and 

adaptively assembles hardware processing modules with 

custom designed data access & reuse strategies to reach a 

subtle balance between the adaptability and the 

accelerating performance. Our major contributions can be 

summarized as follows: 

1) A customized instruction set with moderate control 

granularity is designed to support a wide range of 

CNN models and to provide a sufficient optimization 

space for inference. 

2) A software & hardware co-optimization strategy is 

raised for computing acceleration. At software side, 

different data reuse strategies are selected adaptively 

and dynamically to accommodate different network 

structures. At hardware side, strategies of modular 

design method, weight reuse and layer fusion are 

applied to optimize the computation and to minimize 

the data access to DDR. 

3) We build and test IDLA on a Xilinx VU9P FPGA. 

Compared to existing advanced works [8,9], the new 

design exhibits a higher performance in both its 

computing acceleration and DSP efficiency, together 

with a wide adaptability to various CNN models.  

The rest of this paper is organized as follows: Section 2 

gives a brief introduction of CNN calculations. Section 3 

presents the design of IDLA. Section 4 gives the experi-

mental results and analysis. Section 5 makes the summary. 

 

2. Background 

2.1 Convolutional Neural Networks 

CNNs, such as VGG [4] and ResNet [5], are generally 

cascaded by convolutional (CONV) layers, activation 

layers, residual layers, fully connected (FCN) layers and 

etc. Among them, the CONV layers contribute a major 

cost in computation time and resource. The FCN layers 



conduct lots of matrix-vector multiplications leading to a 

mass use of network weights. The other layers contribute 

little to computation and storage cost, but have non-

negligible influence on the data flow of CNNs’ inference. 

They also need to be treated attentively in designing an 

optimal CNN accelerating scheme.  

 

2.2 Model Compression of CNN 

There are already many researches on CNNs’ model 

compression for the purpose of reducing computation and 

storage cost. In [6], Gupta et al. point out that using 16-bit 

fixed-point numbers has little impact on classification 

accuracy compared to using floating-point numbers. In [7], 

Gysel et al. propose a quantization method of using 

dynamic fixed-point numbers which can greatly reduce 

the computation on FPGA. In [8], Girshick et al. reduce 

the computation of FCN layers by using singular value 

decomposition (SVD) method, which could be widely 

applicable to many other CNNs’ accelerating solutions. 

 

3. IDLA Design Overview 

3.1 System Design 

As shown in Figure 1(a), the IDLA accelerator consists of 

2 major parts. The network parser analyzes the parameters 

of a CNN model, then generates an optimal scheduling 

scheme with least data access to DDR for computing 

acceleration. The general-purposed hardware engine 

assembles different hardware modules to construct an 

optimized computing flow for CNN inference and 

accelerate calculations. Besides, an instruction set is 

customized to coordinate the joint-work of software and 

hardware, and to provide with more adaptability and 

optimization space for inference. 

The hardware engine is composed of 4 hardware modules 

of Ctrl, Load, Comp and Save, as shown in Figure 1(b). 

The dotted lines in Figure 1(b) indicate the data 

dependencies between modules, where handshake FIFOs 

are used to prevent hazards. Based on FPGA, the 

accelerating engine is built with a modular design fashion 

to make different modules work concurrently. Multiple 

hardware optimization strategies, such as weight reuse 

and layer fusion, are applied in its detail design for a better 

balance between performance and resource utilization.  

 

3.2 Instruction Set 

The instruction set is used to pilot the operations of the 

hardware engine. Four 128-bit instructions (Load, Comp, 

Save and Comp_cfg) are defined, as shown in Figure 2.  

The Comp_cfg instruction is used to configure the bias 

data and the control registers of the Comp module. The 

field of CFG_OP determines the selection of configuring 

the registers or the bias data. CFG_ADDR gives the 

starting address and CFG_DATA gives the data values for 

registers configuration. DRAM_BASE gives the starting 

address and CFG_CH_SIZE gives the size of the bias data.  
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For all the four instructions, the field of DEPT_INFO 

indicates the data dependencies among modules. BUF_ID 

selects the buffer for load or save operations. CMP_OP 

selects the operation (convolution/average pooling/max 

pooling) for the Comp module. CMP_SIZE indicates the 

sizes of input/output feature map, kernel and the value of 

stride. ACC_FLAG is used to clear accumulation buffer.  

 

3.3 Accelerator Design and Optimization 

3.3.1 Ctrl & Load & Save Module 

The Ctrl module fetches instructions from DDR, parses 

their OP_CODE and distributes them to corresponding 

modules. The Load module has 3 submodules: Load_inp, 

Load_res and Load_wgt. Load_inp judges its data 

dependencies with other modules by fetching flags from 

handshake FIFOs, then it loads data from DDR to inp_buf. 

Load_res and Load_wgt are used to load residual data and 

weights from DDR to on-chip buffer. The Save module 

writes computed results back to DDR. 

 
3.3.2 Comp Module 

Comp module contains 3 submodules: Cfg, Dense and 

Alu, as shown in Figure 4(a). Cfg configures the registers 

and the bias data. Dense executes the convolution and 

pooling calculations. As an example, Figure 3(a) shows a 

data flow of a normal convolutional computation, in 

which the variable loop range makes it difficult to unroll 

the loops and to accelerate the computation. To figure out 

such a problem, we propose a new data flow in our 

hardware design, as shown in Figure 3(b). We let the 

innermost two loops (co, ci) have a fixed loop boundary 

value of 𝑇𝑝 . These two loops can be completed in one 

cycle by the way of unrolling them completely. The 

unrolled loops can be regarded as a matrix-vector 

multiplication between a weight matrix in the size of 



[𝑇𝑝, 𝑇𝑝]  and an input feature map in the size of 𝑇𝑝 , 

which can be calculated by using a multiply-add array as 

shown in Figure 4(c). Thus, the data access of this 

convolution can get a large amount of reduction since all 

the weights can be reused in loop h and w.  

The Alu submodule is designed for adding bias, residual 

function and ReLU. Batch normalization layers can be 

fused into CONV layers. Alu is designed by using a layer 

fusion strategy to further reduce data access, as shown in 

Figure 4(b). The operations of Alu are executed optionally 

according to the configuration of the instructions. 

 

for co, ci in range(OC, IC):{

    sum[OC][OH][OW]=0;

    for ky, kx in range(K, K):

        for h, w in range(OH, OW){

sum[co][h][w] += 

fmap[cii*Tp+ci][hin][win]* \

weight[co][ci][ky][kx];}

   }         }

int BOC=ceil(OC/Tp); int BIC=ceil(IC/Tp);

for coo, cii in range(BOC, BIC){

    sum[Tp][OH][OW]=0;

    for ky, kx in range(K, K):

        for h, w in range(OH, OW):

    for co in range(Tp):

      for ci in range(Tp):{

sum[co][h][w] += 

fmap[cii*Tp+ci][hin][win]* \

weight[coo*Tp+co][cii*Tp+ci][ky][kx];}}

      (a) Data Flow of Normal Convolution (b) Data Flow of Proposed Convolution  

Figure 3. Data flow of Normal/Proposed Convolution 
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3.4 Convolution Mapping Optimization 

In order to minimize data access to DDR in each CONV 

layer’s computation, optimal operation schemes are 

applied for the reuse of input data and weight data. The 

input stationary scheme loads an input feature map block 

into Inp_buf, and then loads weight data block to Wgt_buf. 

Weight stationary scheme reuses the weight data. At the 

system level, for each CONV layer, the network parser 

calculates the total data access of the two schemes and 

selects the smaller one. 

 

4. Experimental Results 

In the experiment, we build an IDLA instance on a Xilinx 

VU9P FPGA and connect it to an Intel Xeon E5-2680 

CPU through a PCIE x16 interface. IDLA reaches its best 

performance when setting 𝑇𝑝 332 (𝑇𝑝  is the width and 

height of the multiply-add array). Table 1 gives the FPGA 

resource utilization of IDLA, running at a maximum 

frequency of 167MHz.  

We then implement a ResNet18 model and a VGG16-

SVD model respectively on this IDLA instance. Table 2 

presents their computing latencies and their used 

instruction numbers. We compare IDLA with existing 

works on VGG16 in Table 3, we can see that IDLA has 

reached a computing performance of 277.63 GOPS on 

VGG16-SVD, better than the existing advanced works in 

[9] and [10]. The DSP utilization index Ops/DSP/cycle is 

close to the limit value 2, which is far above [9] and [10]. 

 

Table 1.Resource Utilization (@167MHz) 

 LUTs DSPs 18k BRAMs URAM 

Used 205667 1089 1344 54 

Utilization 17.4% 15.9% 31.1% 5.63% 

Table 2.Test Results of ResNet18 and VGG16-SVD 

CNN model GOPS Latency(ms) Inst Number 

ResNet18 168.76 21.51 1636 

VGG16-SVD 277.63 110.7 4621 

Table 3.Comparison of IDLA against existing works 

 Qiu[9] Zhang[10]    IDLA 

Platform 
Zynq 

XC7Z045 

Xilinx 

KU060 
Xilinx VU9P 

Network VGG16-SVD VGG16 VGG16-SVD 

FRQZ(MHz) 150 200 167 

DSP for Conv 780 1024 1024 

Data precision 16bit 16bit 16bit 

PRFM (GOPS) 136.97 266 277.63 

Ops/DSP/cycle 1.17 1.30 1.62 

 

5. Summary 

This paper proposes an instruction-based adaptive CNN 

accelerator IDLA, including a hardware engine, a network 

parser and a customized instruction set. The network 

parser generates optimal scheduling schemes with least 

data access for each CNN model. The hardware engine 

uses a modular design fashion to make different modules 

work concurrently, and adopts layer fusion, weight reuse 

and etc. strategies to minimize data access. The 

instruction set is designed to coordinate the joint-work of 

software and hardware. We deploy and test IDLA on a 

Xilinx VU9P FPGA. Experimental results show that, 

compared with the existing advanced works [9] and [10], 

IDLA has achieved an overwhelming performance in both 

the computing (277.64 GOPS on VGG16-SVD) and the 

DSP efficiency (1.62 Ops/DSP/cycle on VGG16-SVD). 
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