
IDLA: An Instruction-based Adaptive CNN Accelerator

Peng Gao1, Zhize Huang1, Hanchen Ye2, Gengsheng Chen1*

1State Key Laboratory of ASIC and System, Fudan University, No.825 Zhangheng Road, Shanghai, 201203, China

2University of Illinois at Urbana-Champaign, 1308 W Main St, Urbana, Illinois 61801, US

* Email: gschen@fudan.edu.cn

Abstract
In this paper, we propose an instruction-based adaptive

CNN accelerator named IDLA for fast and efficient

deployments of CNN models on FPGA. The hardware

engine of IDLA accelerates the computation of CNN

models by adaptively using different functional modules.

Following a modular design fashion, the hardware engine

is attentively designed to enable all these modules to work

concurrently and to improve the usage efficiency of on-

chip resources. Besides, layer fusion and weight reuse

strategies are applied to reduce data access to DDR.

Coordinating with this hardware engine, a network parser

is developed to automatically analyze different CNN

models to generate an optimal scheduling scheme for each

CNN model. Moreover, a customized instruction set with

moderate-granularity is designed to further enhance the

flexibility in joint-optimization between software and

hardware. We build the IDLA on a Xilinx VU9P FPGA.

The experimental results show that our proposed IDLA

accelerator has reached an overwhelming performance of

168.76 (ResNet18) and 277.63 (VGG16-SVD) GOPS,

and an DSP efficiency of 1.62 Ops/DSP/cycle (VGG16-

SVD), much better than existing works [9] and [10].

1. Introduction
In recent years, convolutional neural networks (CNNs)

have replaced traditional algorithms in many application

fields such as image classification, target tracking, face

detection and etc. Meanwhile, being a field programmable

hardware platform, FPGA helps to shorten development

cycle under the assistance of high-level synthesis tools,

leading to a soaring demand of FPGA-based accelerators

in both cloud and edge computations.

CNN accelerators on FPGA can be generally classified

into two categories: specialized and general purposed.

Specialized accelerators, with customized circuit design

in calculating units, memory access and data flow, can

provide a significant accelerating performance [1,9]. But

they usually have a big limitation in their adaptability to

different CNN algorithms, which largely prevents them

from being used in various scenarios. Based on these

specialized accelerators, more recent researches have

placed their efforts on more flexible and general-purposed

solutions. Ma Y, et al. [2] use a purely modularized design

to fulfill quick deployments of different deep residual

CNNs. But their work ignores the optimization of data

flow and memory access, which unavoidably leads to a

low model adaptability and a low computing efficiency.

VTA [3] takes another approach of placing its emphasis

on system stack design. By using a model compiler, it has

a high generality for various kinds of CNN models.

However, the full functional design in its hardware

processing units and data access scheme makes it difficult

to provide with a competing accelerating performance.

To tackle these problems, in this paper, we present a new

CNN accelerator named IDLA (Instruction-based Deep

Learning Accelerator), which automatically analyzes the

network structures of different CNN models and

adaptively assembles hardware processing modules with

custom designed data access & reuse strategies to reach a

subtle balance between the adaptability and the

accelerating performance. Our major contributions can be

summarized as follows:

1) A customized instruction set with moderate control

granularity is designed to support a wide range of

CNN models and to provide a sufficient optimization

space for inference.

2) A software & hardware co-optimization strategy is

raised for computing acceleration. At software side,

different data reuse strategies are selected adaptively

and dynamically to accommodate different network

structures. At hardware side, strategies of modular

design method, weight reuse and layer fusion are

applied to optimize the computation and to minimize

the data access to DDR.

3) We build and test IDLA on a Xilinx VU9P FPGA.

Compared to existing advanced works [8,9], the new

design exhibits a higher performance in both its

computing acceleration and DSP efficiency, together

with a wide adaptability to various CNN models.

The rest of this paper is organized as follows: Section 2

gives a brief introduction of CNN calculations. Section 3

presents the design of IDLA. Section 4 gives the experi-

mental results and analysis. Section 5 makes the summary.

2. Background

2.1 Convolutional Neural Networks

CNNs, such as VGG [4] and ResNet [5], are generally

cascaded by convolutional (CONV) layers, activation

layers, residual layers, fully connected (FCN) layers and

etc. Among them, the CONV layers contribute a major

cost in computation time and resource. The FCN layers

conduct lots of matrix-vector multiplications leading to a

mass use of network weights. The other layers contribute

little to computation and storage cost, but have non-

negligible influence on the data flow of CNNs’ inference.

They also need to be treated attentively in designing an

optimal CNN accelerating scheme.

2.2 Model Compression of CNN

There are already many researches on CNNs’ model

compression for the purpose of reducing computation and

storage cost. In [6], Gupta et al. point out that using 16-bit

fixed-point numbers has little impact on classification

accuracy compared to using floating-point numbers. In [7],

Gysel et al. propose a quantization method of using

dynamic fixed-point numbers which can greatly reduce

the computation on FPGA. In [8], Girshick et al. reduce

the computation of FCN layers by using singular value

decomposition (SVD) method, which could be widely

applicable to many other CNNs’ accelerating solutions.

3. IDLA Design Overview

3.1 System Design

As shown in Figure 1(a), the IDLA accelerator consists of

2 major parts. The network parser analyzes the parameters

of a CNN model, then generates an optimal scheduling

scheme with least data access to DDR for computing

acceleration. The general-purposed hardware engine

assembles different hardware modules to construct an

optimized computing flow for CNN inference and

accelerate calculations. Besides, an instruction set is

customized to coordinate the joint-work of software and

hardware, and to provide with more adaptability and

optimization space for inference.

The hardware engine is composed of 4 hardware modules

of Ctrl, Load, Comp and Save, as shown in Figure 1(b).

The dotted lines in Figure 1(b) indicate the data

dependencies between modules, where handshake FIFOs

are used to prevent hazards. Based on FPGA, the

accelerating engine is built with a modular design fashion

to make different modules work concurrently. Multiple

hardware optimization strategies, such as weight reuse

and layer fusion, are applied in its detail design for a better

balance between performance and resource utilization.

3.2 Instruction Set

The instruction set is used to pilot the operations of the

hardware engine. Four 128-bit instructions (Load, Comp,

Save and Comp_cfg) are defined, as shown in Figure 2.

The Comp_cfg instruction is used to configure the bias

data and the control registers of the Comp module. The

field of CFG_OP determines the selection of configuring

the registers or the bias data. CFG_ADDR gives the

starting address and CFG_DATA gives the data values for

registers configuration. DRAM_BASE gives the starting

address and CFG_CH_SIZE gives the size of the bias data.

Host PC FPGA

insts
Network

Parser

Hardware

Engine

Ctrl

Load_inp

Load_wgt

Load_res

Dense

Alu Save
Comp

Load

inp_buf

res_buf

wgt_buf

out_buf

(a) CPU-FPGA system

(b) Hardware Engine

Figure 1. Architecture of IDLA

OP

CODE

DEPT

INFO

BUF

ID

DRAM

BASE

BUF

BASE

INP/WGT

SIZE INFO

PAD

SIZE
RESV

OP

CODE

DEPT

INFO

CMP

OP

INP WGT OUT

BUF BASE

CMP

SIZE

BIAS

ADDR

ACC

FLAG
RESV

OP

CODE

DEPT

INFO

BUF

ID

DRAM

BASE

BUF

BASE

OUT

SIZE
RESV

OP

CODE

DEPT

INFO

CFG

OP

CFG

ADDR
RESV

CFG

DATA

DRAM

BASE

CFG

CH_SIZE

(a) Load Instruction

(b) Comp Instruction

(c) Save Instruction

(d) Comp_cfg Instruction
Figure 2. Instruction Set of IDLA

For all the four instructions, the field of DEPT_INFO

indicates the data dependencies among modules. BUF_ID

selects the buffer for load or save operations. CMP_OP

selects the operation (convolution/average pooling/max

pooling) for the Comp module. CMP_SIZE indicates the

sizes of input/output feature map, kernel and the value of

stride. ACC_FLAG is used to clear accumulation buffer.

3.3 Accelerator Design and Optimization

3.3.1 Ctrl & Load & Save Module

The Ctrl module fetches instructions from DDR, parses

their OP_CODE and distributes them to corresponding

modules. The Load module has 3 submodules: Load_inp,

Load_res and Load_wgt. Load_inp judges its data

dependencies with other modules by fetching flags from

handshake FIFOs, then it loads data from DDR to inp_buf.

Load_res and Load_wgt are used to load residual data and

weights from DDR to on-chip buffer. The Save module

writes computed results back to DDR.

3.3.2 Comp Module

Comp module contains 3 submodules: Cfg, Dense and

Alu, as shown in Figure 4(a). Cfg configures the registers

and the bias data. Dense executes the convolution and

pooling calculations. As an example, Figure 3(a) shows a

data flow of a normal convolutional computation, in

which the variable loop range makes it difficult to unroll

the loops and to accelerate the computation. To figure out

such a problem, we propose a new data flow in our

hardware design, as shown in Figure 3(b). We let the

innermost two loops (co, ci) have a fixed loop boundary

value of 𝑇𝑝 . These two loops can be completed in one

cycle by the way of unrolling them completely. The

unrolled loops can be regarded as a matrix-vector

multiplication between a weight matrix in the size of

[𝑇𝑝, 𝑇𝑝] and an input feature map in the size of 𝑇𝑝 ,

which can be calculated by using a multiply-add array as

shown in Figure 4(c). Thus, the data access of this

convolution can get a large amount of reduction since all

the weights can be reused in loop h and w.

The Alu submodule is designed for adding bias, residual

function and ReLU. Batch normalization layers can be

fused into CONV layers. Alu is designed by using a layer

fusion strategy to further reduce data access, as shown in

Figure 4(b). The operations of Alu are executed optionally

according to the configuration of the instructions.

for co, ci in range(OC, IC):{

 sum[OC][OH][OW]=0;

 for ky, kx in range(K, K):

 for h, w in range(OH, OW){

sum[co][h][w] +=

fmap[cii*Tp+ci][hin][win]* \

weight[co][ci][ky][kx];}

 } }

int BOC=ceil(OC/Tp); int BIC=ceil(IC/Tp);

for coo, cii in range(BOC, BIC){

 sum[Tp][OH][OW]=0;

 for ky, kx in range(K, K):

 for h, w in range(OH, OW):

 for co in range(Tp):

 for ci in range(Tp):{

sum[co][h][w] +=

fmap[cii*Tp+ci][hin][win]* \

weight[coo*Tp+co][cii*Tp+ci][ky][kx];}}

 (a) Data Flow of Normal Convolution (b) Data Flow of Proposed Convolution

Figure 3. Data flow of Normal/Proposed Convolution

Load Input Controller

L
o

ad
 W

g
t

C
o

n
tr

o
ll

er

+

O
u

tp
u

t
C

o
n

tr
o

ll
er

(a) Comp

(b) Alu

F
IF

O
W

eig
h

t

Dense

Alu

inp_buf
wgt_buf

res_buf

bias_buf

Cfg

out_buf

Add

bias
Res ReLU

W[0,0]*

Inp[0]

W[0,1]*

Inp[1]

W[0,Tp-1]*

Inp[Tp-1]

W[Tp-1,0]*

Inp[0]
 W[Tp-1,1]*

Inp[1]

W[Tp-1,Tp-1]*

Inp[Tp-1]

W[1,0]*

Inp[0]

W[1,1]*

Inp[1]

W[1,Tp-1]*

Inp[Tp-1]

+
+

(c) Dense
Figure 4. Hardware Architecture

3.4 Convolution Mapping Optimization

In order to minimize data access to DDR in each CONV

layer’s computation, optimal operation schemes are

applied for the reuse of input data and weight data. The

input stationary scheme loads an input feature map block

into Inp_buf, and then loads weight data block to Wgt_buf.

Weight stationary scheme reuses the weight data. At the

system level, for each CONV layer, the network parser

calculates the total data access of the two schemes and

selects the smaller one.

4. Experimental Results

In the experiment, we build an IDLA instance on a Xilinx

VU9P FPGA and connect it to an Intel Xeon E5-2680

CPU through a PCIE x16 interface. IDLA reaches its best

performance when setting 𝑇𝑝 332 (𝑇𝑝 is the width and

height of the multiply-add array). Table 1 gives the FPGA

resource utilization of IDLA, running at a maximum

frequency of 167MHz.

We then implement a ResNet18 model and a VGG16-

SVD model respectively on this IDLA instance. Table 2

presents their computing latencies and their used

instruction numbers. We compare IDLA with existing

works on VGG16 in Table 3, we can see that IDLA has

reached a computing performance of 277.63 GOPS on

VGG16-SVD, better than the existing advanced works in

[9] and [10]. The DSP utilization index Ops/DSP/cycle is

close to the limit value 2, which is far above [9] and [10].

Table 1.Resource Utilization (@167MHz)

 LUTs DSPs 18k BRAMs URAM

Used 205667 1089 1344 54

Utilization 17.4% 15.9% 31.1% 5.63%

Table 2.Test Results of ResNet18 and VGG16-SVD

CNN model GOPS Latency(ms) Inst Number

ResNet18 168.76 21.51 1636

VGG16-SVD 277.63 110.7 4621

Table 3.Comparison of IDLA against existing works

 Qiu[9] Zhang[10] IDLA

Platform
Zynq

XC7Z045

Xilinx

KU060
Xilinx VU9P

Network VGG16-SVD VGG16 VGG16-SVD

FRQZ(MHz) 150 200 167

DSP for Conv 780 1024 1024

Data precision 16bit 16bit 16bit

PRFM (GOPS) 136.97 266 277.63

Ops/DSP/cycle 1.17 1.30 1.62

5. Summary

This paper proposes an instruction-based adaptive CNN

accelerator IDLA, including a hardware engine, a network

parser and a customized instruction set. The network

parser generates optimal scheduling schemes with least

data access for each CNN model. The hardware engine

uses a modular design fashion to make different modules

work concurrently, and adopts layer fusion, weight reuse

and etc. strategies to minimize data access. The

instruction set is designed to coordinate the joint-work of

software and hardware. We deploy and test IDLA on a

Xilinx VU9P FPGA. Experimental results show that,

compared with the existing advanced works [9] and [10],

IDLA has achieved an overwhelming performance in both

the computing (277.64 GOPS on VGG16-SVD) and the

DSP efficiency (1.62 Ops/DSP/cycle on VGG16-SVD).

References
[1] Huang C, et al., International Conference on ASIC

(ASICON), p.1037-1040 (2017).

[2] Ma Y, et al., International Symposium on Circuits and

Systems, p.1-4 (2017).

[3] Moreau T, et al., arXiv:1807.04188v1 (2018).

[4] Simonyan K, et al., arXiv:1409.1556 (2014).

[5] Kaiming He, et al., arXiv:1512.03385 (2015)

[6] Gupta S, et al., arXiv:1502.02551 (2015).

[7] Gysel P, et al., arXiv:1604.03168 (2016)

[8] Girshick R, arXiv:1504.08083 (2015).

[9] Qiu J, et al., ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, p.26-35(2016).

[10] Zhang C, et al. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

p.2072-2085 (2018).

