
Hanchen Ye1, Cong Hao2, Jianyi Cheng3, Hyunmin Jeong1, Jack Huang1,
Stephen Neuendorffer4, Deming Chen1

1University of Illinois at Urbana-Champaign, 2Georgia Institute of Technology,
3Imperial College London, 4Xilinx Inc.

ScaleHLS: A New Scalable High-Level Synthesis
Framework on Multi-Level Intermediate Representation

Outline
● Motivation

● ScaleHLS Framework
○ Integration
○ Representation
○ Optimization
○ Exploration

● Evaluation Results
○ C/C++ Kernels
○ PyTorch Models

● Conclusion

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

High-level Synthesis (HLS) is great

● Reduce design complexity: Code density can be reduced by 7x - 8x moving from RTL to C/C++ [1]

● Improve design productivity: Get to working designs faster and reduce time-to-market [1]

● Identify performance-area trade-offs: Implement design choices quickly and avoid premature optimization [2]

[1] J. Cong, et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. 2011. TCAD.
[2] B. C. Schafer, et al. High-Level Synthesis Design Space Exploration: Past, Present, and Future. 2020. TCAD.
[3] A. Sohrabizadeh, et al. AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators. 2022. TODAES.
[4] M. Yu. Chimera: A Hybrid Machine Learning-Driven Multi-Objective Design Space Exploration Tool for FPGA High-Level Synthesis. 2021. IDEAL.

Designing HLS accelerator is challenging

● Friendly to experts: Rely on the designers writing ‘good’ code to achieve high design quality [3]

● Large design space: Different combinations of applicable optimizations for large-scale designs [2]

● Correlation of design factors: It is difficult for human to discover the complicated correlations [4]

High-level
Description
(e.g. C/C++) Scheduling Allocation Binding

RTL Design
(e.g. Verilog)

High-level Synthesis (HLS)

Motivation: Challenges of HLS

Motivation: Marry HLS and MLIR

● Dataflow Pipeline
● Node Merging
● IP Integration

Graph Optimization

● Loop Tiling
● Loop Unroll and Jam
● Loop Perfectization

Loop Optimization

● Loop Pipeline
● Array Partition
● Primitive Integration

Directive Optimization

[1] C. Lattner, et al. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation. 2021. CGO.

[1]

ScaleHLS Framework: Integration

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Integration (Cont’d)
Inputs

C/C++ Polygeist [1]

PyTorch Torch-MLIR [2]

Outputs

C/C++ C/C++ Emitter

Verilog CIRCT [3]

(work-in-progress)

[1] Polygeist: https://github.com/wsmoses/Polygeist [2] Torch-MLIR: https://github.com/llvm/torch-mlir [3] CIRCT: https://github.com/llvm/circt

https://github.com/wsmoses/Polygeist
https://github.com/llvm/torch-mlir
https://github.com/llvm/circt

ScaleHLS Framework: Representation

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = affine.load %W[%r, %s, %c, %k] : memref<3x3x3x64xi8>
 %o = affine.load %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 %mul = arith.muli %i, %w : i8
 %add = arith.addi %o, %mul : i8
 affine.store %add, %O[0, %x, %y, %k] : memref<1x30x30x64xi8>
 }
 }
 }
 }
 }
} Conv2D Loop-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

ScaleHLS Framework: Representation (Cont’d)

affine.for %x = 0 to 30 {
 affine.for %y = 0 to 30 {
 affine.for %k = 0 to 64 step 2 {
 affine.for %r = 0 to 3 {
 affine.for %s = 0 to 3 {
 affine.for %c = 0 to 3 {
 %i = affine.load %I[0, %x + %r, %y + %s, %c] : memref<1x32x32x3xi8>
 %w = vector.transfer_read %W[%r, %s, %c, %k], : memref<3x3x3x64xi8>, vector<2xi8>

 %mul = "hlscpp.mul_prim"(%i, %w) : (i8, vector<2xi8>) -> vector<2xi16>

 %mul32 = "hlscpp.cast_prim"(%mul) : (vector<2xi16>) -> vector<2xi32>

 } {loop_directive = #hlscpp.ld<pipeline=true, targetII=1, ...}
 }
 }
 }
 }
} Conv2D Directive-level MLIR

%O = "tosa.conv2d"(%I, %W, ...) {...} : (tensor<1x32x32x3xi8>, tensor<64x3x3x3xi8>, ...) ->
 tensor<1x30x30x64xi8> Conv2D Graph-level MLIR

ScaleHLS Framework: Optimization

Level ScaleHLS Passes

Graph
-simplify-tosa-graph

-legalize-dataflow

-split-function

Loop

-affine-loop-perfectization

-remove-variable-bound

-affine-loop-tile

-affine-loop-order-opt

-affine-loop-unroll-jam

-simplify-affine-if

-affine-store-forward

-simplify-memref-access

Directive

-loop-pipelining

-function-pipelining

-array-partition

-create-hlscpp-primitive

-qor-estimation

HLS QoR
Estimator

ScaleHLS Framework: Graph Optimization

Graph-level
Pipelining
(Dataflow)

-legalize-dataflow
-split-function

-legalize-dataflow=”insert-copy”
-split-function=“min-grain=1”

Graph-level throughput-area tradeoff

-legalize-dataflow=”insert-copy”
-split-function=“min-grain=2”

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
 }
 }
 }
 }
} ScaleHLS Emitted C

Loop-level
Opts in MLIR

ScaleHLS Framework: Loop Optimization

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int i = 0; i < 32; i++) {
 for (int j = 0; j <= i; j++) {
 C[i][j] *= beta;
 for (int k = 0; k < 32; k++) {
 C[i][j] += alpha * A[i][k] * A[j][k];
 }
 }
 }
} Baseline C

Loop perfectization

Loop unrolling

Remove variable bound

Loop permutation

ScaleHLS Framework: Directive Optimization

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
 }
 }
 }
 }
} ScaleHLS Emitted C

void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A

#pragma HLS resource variable=C core=ram_s2p_bram
#pragma HLS resource variable=A core=ram_s2p_bram
#pragma HLS array_partition variable=A cyclic factor=2 dim=2

 for (int k = 0; k < 32; k += 2) {
 for (int i = 0; i < 32; i += 1) {
 for (int j = 0; j < 32; j += 1) {
#pragma HLS pipeline II = 3
 if ((i - j) >= 0) {
 int v7 = C[i][j];
 int v8 = beta * v7;
 int v9 = A[i][k];
 int v10 = A[j][k];
 int v11 = (k == 0) ? v8 : v7;
 int v12 = alpha * v9;
 int v13 = v12 * v10;
 int v14 = v11 + v13;
 int v15 = A[i][(k + 1)];
 int v16 = A[j][(k + 1)];
 int v17 = alpha * v15;
 int v18 = v17 * v16;
 int v19 = v14 + v18;
 C[i][j] = v19;
 } } } }
} ScaleHLS Emitted C

Directive-level
Opts in MLIR

Array Partitioning

Loop Pipelining

ScaleHLS Framework: Exploration

ScaleHLS Framework: Exploration (Cont’d)

Design Space Exploration (DSE) algorithm

1. Sample the whole design space and evaluate each sampled
design point with the QoR estimator

2. Extract the Pareto frontier from all evaluated design points

3. Evaluate the closest neighbor of a randomly selected design
point in the current Pareto frontier

4. Repeat step (2) and (3) to update the discovered Pareto frontier

5. Stop when no eligible neighbor can be found or meeting the
early-termination criteria

With the Transform and Analysis Library of ScaleHLS,
the exploration engine can be extended to support other
optimization algorithms in the future.

Evaluation of C/C++ Kernels: Design Space Exploration

● The target platform is Xilinx XC7Z020 FPGA. Benchmarks are from PolyBench-C.

● Optimization parameters are automatically selected by the design space exploration (DSE) engine.

● The speedups are compared to the original computation kernels without DSE or any manual optimizations.

Evaluation of C/C++ Kernels: Scalability Study

The problem sizes of PolyBench-C benchmarks are scaled from from 32 to 4096 and the DSE engine is
used to search for the optimized solution under each setting.

● The target platform is one SLR (super logic region) of Xilinx VU9P FPGA.

● The PyTorch models are parsed into ScaleHLS and optimized at multiple levels, including graph, loop,
and directive optimizations.

● The speedups are compared to the baseline designs, which are compiled from PyTorch to HLS C/C++
through ScaleHLS but without the multi-level optimization applied.

Evaluation of PyTorch Models: Multi-Level Optimization

D, L{n}, and G{n} denote directive, loop, and graph optimizations, respectively. Larger n indicates larger loop
unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

Evaluation of PyTorch Models: Ablation Study

ScaleHLS is Open-Sourced!

For HLS Researchers

1. Rapidly implement new HLS optimization algorithms on top of the multi-level IR

2. Investigate new DSE algorithms using the transform and analysis library

3. Rapidly build an end-to-end HLS optimization flow and demonstrate your awesome works!

For HLS Users

1. Optimize HLS designs using the multi-level optimization passes

2. Avoid premature design choices by using the QoR estimator to estimate the latency and utilization

3. Find optimized HLS designs with the automated DSE engine

ScaleHLS GitHub Repository
https://github.com/hanchenye/scalehls

https://github.com/hanchenye/scalehls

Conclusion

1. We presented ScaleHLS, a new MLIR-based HLS compilation flow, which features multi-level representation
and optimization of HLS designs and supports a transform and analysis library dedicated for HLS.

2. ScaleHLS enables an end-to-end compilation pipeline supporting both C/C++ and PyTorch as input.

3. An automated and extensible DSE engine is developed to search for optimal solutions in the
multi-dimensional design spaces.

4. Experimental results demonstrate that ScaleHLS has a strong scalability to optimize large-scale and
sophisticated HLS designs and achieves significant performance and productivity improvements on a set of
benchmarks.

Acknowledgement

We thank Eric Cheng of Laboratory for Physical Sciences (LPS) and Samuel Bayliss of Xilinx for insightful
discussions. This work is supported in part by Xilinx Center of Excellence at UIUC, Xilinx Adaptive Compute
Cluster (XACC) initiative, and BAH HT 15-1158 contract.

Email: hanchen8@illinois.edu

Website: hanchenye.com

Questions?

mailto:hanchen8@illinois.edu
http://hanchenye.com

