
Compilers for Domain-Specific Accelerators
Hanchen Ye

hanchenye@gmail.com
Dec. 2, 2021

mailto:hanchenye@gmail.com

About me

Hanchen Ye is an PhD candidate in ECE at UIUC advised by professor
Deming Chen. He obtained his Bachelor and Master degree at Fudan
University in 2017 and 2019, respectively. His research lies in the area of
high-level synthesis (HLS), domain-specific compilers, and hardware
acceleration. He has published multiple conference papers on DAC, ICCAD,
HPCA, etc. He has been regularly contributing to open-source projects,
including MLIR, CIRCT, MLIR-AIE, etc.

● Background: Domain-Specific Accelerator (DSA)

● Software Compilation: How to program DSA?

○ MLIR: Multi-Level Intermediate Representation

● Hardware Compilation: How to design and verify DSA?

○ CIRCT: Circuit IR Compilers and Tools

● Conclusion: Software and Hardware Co-design

Outline

● Background: Domain-Specific Accelerator (DSA)

● Software Compilation: How to program DSA?

○ MLIR: Multi-Level Intermediate Representation

● Hardware Compilation: How to design and verify DSA?

○ CIRCT: Circuit IR Compilers and Tools

● Conclusion: Software and Hardware Co-design

Outline

The Golden Age of Architecture and Compiler

● A New Golden Age for Computer Architecture, David Patterson, 2019.
● The Golden Age of Compilers, Chris Lattner, 2021.

https://youtu.be/kFT54hO1X8M
https://youtu.be/4HgShra-KnY

Background of Domain-Specific Accelerator (DSA)

Source: A New Golden Age for Computer Architecture, J. Hennessy
and D. Patterson

Source: AI and Compute, D. Amodei and D. Hernandez

Exponentially increasing computing demands The End of Moore’s Law

Opportunities and Challenges of DSA

Source: A New Golden Age for Computer Architecture, J. Hennessy and D. Patterson

Opportunities and Challenges of DSA (Cont’d)

Source: The Golden Age of Compilers, C. Lattner.

● Background: Domain-Specific Architecture (DSA)

● Software Compilation: How to program DSA?

○ MLIR: Multi-Level Intermediate Representation

● Hardware Compilation: How to design and verify DSA?

○ CIRCT: Circuit IR Compilers and Tools

● Conclusion: Software and Hardware Co-design

Outline

How to program DSA? Take AI DSA as example

Programming Languages

Domain-specific languages (DSL) or
domain-specific programming frameworks

Compilers

1. Using traditional compilers, such as LLVM, for
optimization and code generation?

○ LLVM is designed for CPU compilation and only
supports low-level abstraction of programs.

2. Developing chip-specific compilation framework?
○ Instruction parallelization, multi-thread management,

memory management, heterogeneous back-ends,
code debugging, code generation, etc.

We need a modular, extensible, and multi-level
compilation framework, which can be extended for the
representation, optimization, and code generation of
different domains. MLIR!

Source: The architecture of open-source applications, C. Lattner.

● LLVM uses the same intermediate representation (IR) to represent ALL programs.
● All program optimizations are based on the LLVM IR.
● LLVM dispatches the front-ends, optimizations, and back-ends. O(m*n) -> O(1)

From LLVM to MLIR

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.

● More and more programming languages demand customized IR for optimization.
● The IR for different languages have different abstraction level.
● Language-specific IR can be lowered to LLVM for back-end code generation.

LLVM IR ...

Swift SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ... CIR IR

Fortran FIR IRFlang AST

From LLVM to MLIR (Cont’d)

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

● Different back-ends demand customized IR for optimization
● DSAs even cannot use LLVM for generating back-end codes and demand their

own IR for code generation

LLVM IR ...

Swift Swift AST

Rust Rust AST

Julia Julia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ...

Fortran Flang AST

ROCm

AVX

SPIR-V

NVVM
SIL IR

MIR IR

Julia IR

 CIR IR

FIR IR

💣

Severe Fragmentation: IRs have different implementations and “frameworks”

DSA-
Specific IR

...

From LLVM to MLIR (Cont’d)

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

● Multi-Level Intermediate Representation
● State of the art compiler technology
● Built on top of LLVM’s open and library-based philosophy
● Modular and extensible
● Originally created within Google for compiling TensorFlow
● Sufficiently general to compile lots of domains

https://mlir.llvm.org

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

MLIR: Compiler Infrastructure for the End of Moore’s Law

https://mlir.llvm.org

Module

Function

Region

func @testFunction(%arg0: i32) {
 %x = call @thingToCall(%arg0) : (i32) -> i32
 br ^bb1
^bb1:
 %y = addi %x, %x : i32
 return %y : i32
}

Block

Operation

Block

Operation

Operation

● SSA-based IR design, explicit typing system
● Module/Function/Region/Block/Operation hierarchy
● Operation can contain multiple Regions

Region
… …

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.

A C++ namespace that contains customized
operations, types, and attributes. Implement
the “correct” abstraction for your domain.

Dialect

Syntax of MLIR

LLVM Dialect ...

Swift Swift AST

Rust Rust AST

Julia Julia AST

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ...

Fortran Flang AST

ROCm Dialect

AVX Dialect

SPIR-V Dialect

NVVM Dialect

SIL Dialect

MIR Dialect

Julia Dialect

CIR Dialect

FIR Dialect

💣

...

MLIR

DSA-Specific
Dialect

● Design and implement dialect
● Optimization and transform inside of a dialect
● Conversion between different dialects
● Code generation of dialect

MLIR is a “Meta IR” and
compiler infrastructure for:

MLIR: “Meta IR” and Compiler Infrastructure

https://llvm.org/devmtg/2015-10/#talk7
https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html
http://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

MLIR-based Domain-Specific Compilation: Tensorflow

Source: https://llvm.discourse.group/t/codegen-dialect-overview/2723

● TF/HLO/MHLO: Tensor level dialects
representing the TF graphs

● Linalg: Linear algebra dialect

● SCF (Structured Control Flow):
Loop level dialect explicitly
representing loop structures

● GPU: Dialect dedicated for
GPU-targeted optimizations

● NVVM/LLVM: Low-level dialect for
CPU/GPU code generation

https://llvm.discourse.group/t/codegen-dialect-overview/2723

● Website: https://mlir.llvm.org/
● GitHub: https://github.com/llvm/llvm-project/tree/main/mlir
● Forums: https://llvm.discourse.group/c/mlir/31
● Discord: https://discord.gg/xS7Z362
● Youtube: https://www.youtube.com/MLIRCompiler

Join the MLIR/LLVM Community!

https://mlir.llvm.org/
https://github.com/llvm/llvm-project/tree/main/mlir
https://llvm.discourse.group/c/mlir/31
https://discord.gg/xS7Z362
https://www.youtube.com/MLIRCompiler

● Background: Domain-Specific Architecture (DSA)

● Software Compilation: How to program DSA?

○ MLIR: Multi-Level Intermediate Representation

● Hardware Compilation: How to design and verify DSA?

○ CIRCT: Circuit IR Compilers and Tools

● Conclusion: Software and Hardware Co-design

Outline

How to design and verify DSA?
Design Languages

1. High-level Synthesis? Suitable for designing
high-performance functional sub-modules.

2. Verilog/VHDL is industry standard，but: Huge,
compilated, incompletely implemented; Is it an
IR? Or a programming language for humans? [1]

3. Meta HDL? Chisel/SpinalHDL, CλaSH/Bluespec,
and MyHDL/Migen generate Verilog from modern
languages, such as Scala, Haskell, Python, etc.

[1] The golden age of compilers, C. Lattner.

EDA Tools (Compilers)

The optimization, synthesis, place & route,
and verification can be implemented with
compilation techniques:

1. Hardware circuit can be abstracted as
IR, such as FIRRTL

2. Optimization can be implemented as
the transform of IR, while synthesis and
place & route as the lowering of IR

3. Verification can be implemented
through IR analysis and simulation

We need modular and extensible hardware
compilation framework to represent,
optimize, and simulate hardware circuits.

● Circuit Intermediate Representation Compilers and Tools
● Built using MLIR
● LLVM incubator project
● Composable toolchain for different aspects of

electronic design automation (EDA) process
● Common platform with clean interfaces
● Tools for designing accelerators are relevant for

programming accelerators

https://circt.llvm.org

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

CIRCT: Compiler Infrastructure for the future of EDA

https://circt.llvm.org

Parse Chisel Design into MLIR

HW
CIRCT Core

Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

module Foo:
 input clk: Clock
 input bus: {valid: UInt<1>, data: UInt<32>}

 reg dataReg: UInt, clk

 when bus.valid:
 dataReg <= bus.data

firrtl.module @Foo(in %clk: !firrtl.clock, in %bus:
 !firrtl.bundle<valid: uint<1>, data: uint<32>>) {
 %dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint

 %0 = firrtl.subfield %bus("valid") :
 (!firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<1>

 firrtl.when %0 {
 %1 = firrtl.subfield %bus("data") :
 (!firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<32>

 firrtl.connect %dataReg, %1 : !firrtl.uint, !firrtl.uint<32>
} }

.fir file from Chisel

.mlir file

circt-translate -import-firrtl

[1]

Circuit Transform in FIRRTL Dialect

firrtl.module @Foo(in %clk: !firrtl.clock, in %bus_valid: !firrtl.uint<1>,
 in %bus_data: !firrtl.uint<32>) {
 %dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint<32>

 %0 = firrtl.mux(%bus_valid, %bus_data, %dataReg) :
 (!firrtl.uint<1>, !firrtl.uint<32>, !firrtl.uint<32>) -> !firrtl.uint<32>

 firrtl.connect %dataReg, %0 : !firrtl.uint<32>, !firrtl.uint<32>
}

firrtl.module @Foo(in %clk: !firrtl.clock, in %bus:
 !firrtl.bundle<valid: uint<1>, data: uint<32>>) {
 %dataReg = firrtl.reg %clk : (!firrtl.clock) -> !firrtl.uint

 %0 = firrtl.subfield %bus("valid") :
 (!firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<1>

 firrtl.when %0 {
 %1 = firrtl.subfield %bus("data") :
 (!firrtl.bundle<valid: uint<1>, data: uint<32>>) -> !firrtl.uint<32>

 firrtl.connect %dataReg, %1 : !firrtl.uint, !firrtl.uint<32>
} } .mlir file: High FIRRTL

.mlir file: Low FIRRTL

circt-opt -firrtl-lower-types -firrtl-infer-widths -firrtl-expand-whens

HW
CIRCT Core

Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

[1]

Lower to CIRCT Core Dialects

hw.module @Foo(%clk: i1, %bus_valid: i1, %bus_data: i32) {
 %dataReg = sv.reg : !hw.inout<i32>
 sv.ifdef "SYNTHESIS" {
 } else {
 sv.initial {
 sv.verbatim "`INIT_RANDOM_PROLOG_"
 sv.ifdef.procedural "RANDOMIZE_REG_INIT" {
 %RANDOM = sv.verbatim.expr "`RANDOM" : () -> i32
 sv.bpassign %dataReg, %RANDOM : i32
 }
 }
 }
 %0 = sv.read_inout %dataReg : !hw.inout<i32>
 %1 = comb.mux %bus_valid, %bus_data, %0 : i32
 sv.alwaysff(posedge %clk) {
 sv.passign %dataReg, %1 : i32
 }
 hw.output
}

circt-opt -lower-firrtl-to-hw

.mlir file: HW+Comb+SV

HW
CIRCT Core

Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

[1]

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Export the IR as SystemVerilog

module Foo(
 input clk, bus_valid,
 input [31:0] bus_data);

 reg [31:0] dataReg; // Foo.mlir:32:16

 `ifndef SYNTHESIS // Foo.mlir:33:5
 initial begin // Foo.mlir:35:7
 `INIT_RANDOM_PROLOG_ // Foo.mlir:36:9
 `ifdef RANDOMIZE_REG_INIT // Foo.mlir:37:9
 dataReg = `RANDOM; // Foo.mlir:38:21, :39:11
 `endif
 end // initial
 `endif
 wire [31:0] _T = bus_valid ? bus_data : dataReg;
// Foo.mlir:43:10, :44:10
 always_ff @(posedge clk) // Foo.mlir:45:5
 dataReg <= _T; // Foo.mlir:46:7
endmodule

circt-translate -export-verilog

.sv file

HW
CIRCT Core

Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

[1]

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Represent Circuits: Core Dialects
HW Dialect

● Abstract the structure of hardware circuits, such as
(Ext)Module/Instance, and types, such as InOut, Array,
Struct, Union, etc.

● Module port can support different types, such as
SystemVerilog Interface, in order to abstract hardware
circuits at different abstractions.

● Can combine with dialects apart from Comb and Seq.
● Convenient for IR analysis and transform.

SV Dialect
● Represent declarations and structures in

SystemVerilog in order to print pretty .sv file.

Comb and Seq Dialect
● Represent combinational and sequential logics.

HW
CIRCT Core

Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

[1]

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: PyCDE

Python CIRCT Design Entry (PyCDE)
● Meta HDL based on Python language.
● Parse into MLIR through Python binding.
● Can reuse core dialects for circuit optimization.
● Can reuse the SV dialect and Verilog exporter for

pretty verilog generation.
HW

CIRCT Core
Dialects

Seq.

Chisel

FIRRTL

Comb.

SV

Verilog

CIRCTVerilog
Exporter

FIRRTL
Parser

[1]

PyCDE

Python

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

CIRCT can boost the design and implementation of
hardware programming language

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: Simulation

LLHD (Low Level Hardware Description) Dialect
● Dedicated for low-level circuit representation
● Support MLIR-based circuit simulation

● Support behavioral, structural, and netlist level
simulation for multi-level circuit verification

● Support massive parallelization in the simulation

HW
CIRCT Core

Dialects

Seq.

LLHD

Chisel

FIRRTL

Comb.

SV

Verilog

Simulator
CIRCTVerilog

Exporter

FIRRTL
Parser

VCD Trace

[1]

PyCDE

Python

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

CIRCT can boost the evolution of hardware
simulation techniques

ongoing

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

Modular & Extensible: HLS

Source: Handshake-based HLS in CIRCT, H. Ye.

HW
CIRCT Core

Dialects

Seq.

LLHD

Chisel

FIRRTL

Comb.

SV

Verilog

C/C++

MLIR Core
Dialects

Handshake

Simulator
CIRCT

[2]

Verilog
Exporter

FIRRTL
Parser

VCD Trace

[1]

PyCDE

Python

[1] Chisel3: https://github.com/chipsalliance/chisel3
[2] Polygeist: https://github.com/wsmoses/Polygeist

Handshake Dialect
● Processes communicate through stream interfaces.
● Interfaces connected by single-reader single-writer

FIFOs, which are logically unbounded.
● Processes can access interfaces in any order.
● Provably deterministic if processes cannot test state

of streams: Elastic and Latency Insensitive

CIRCT can boost High-level Synthesis research

https://github.com/chipsalliance/chisel3
https://github.com/wsmoses/Polygeist

● Website: https://circt.llvm.org/
● GitHub: https://github.com/llvm/circt/tree/main/
● Forums: https://llvm.discourse.group/c/Projects-that-want-to-become-official-LLVM-Projects/circt/
● Discord: https://discord.com/channels/636084430946959380/742572728787402763

Join the CIRCT Community!

https://circt.llvm.org/
https://github.com/llvm/circt/tree/main/
https://llvm.discourse.group/c/Projects-that-want-to-become-official-LLVM-Projects/circt/
https://discord.com/channels/636084430946959380/742572728787402763

● Background: Domain-Specific Architecture (DSA)

● Software Compilation: How to program DSA?

○ MLIR: Multi-Level Intermediate Representation

● Hardware Compilation: How to design and verify DSA?

○ CIRCT: Circuit IR Compilers and Tools

● Conclusion: Software and Hardware Co-design

Outline

Spectrum of Compilers

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

Spectrum of Compilers (Cont’d)

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

MLIR

Spectrum of Compilers (Cont’d)

CPU, etc. GPU, etc. TPU, NPU, etc. FPGA, CPLD, etc. ASIC

CIRCTMLIR

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

Hardware and Software Co-design

Software

SystemsDesigns

Source: Applying Circuit IR Compilers and Tools (CIRCT) to ML Applications, M. Urbach.

Thanks!
Q&A

Hanchen Ye
hanchenye@gmail.com

Dec. 2, 2021

mailto:hanchenye@gmail.com

