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Background and Motivation



XLS: Accelerated HW Synthesis

● Takes high-level algorithmic description as input
○ C++ with customized compiler directives
○ DSLX, XLS domain-specific language

● Code optimizations
○ Constant Propagation
○ Dead-code elimination
○ Strength reduction
○ … …

● Generates Verilog as output
○ Pipeline scheduling (e.g., SDC scheduling [1])
○ Verilog code-generation

● Verification utilities
○ Functional simulation (with LLVM JIT [2])
○ Full-stack fuzzing
○ Logical equivalence check (with Z3 [3])

1.An efficient and versatile scheduling algorithm based on SDC formulation (paper)
2.JIT: Just-in-time compilation (wiki)
3.Z3: A satisfiability modulo theories (SMT) theorem prover (github)

https://ieeexplore.ieee.org/document/1688836
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/Z3Prover/z3


XLS: Accelerated HW Synthesis (Cont’d)
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Automated feedback-directed optimization (FDO)
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Feedback-guided
Iterative SDC Scheduling



What is pipeline scheduling?
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Intuition behind feedback-guided scheduling
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Intuition behind feedback-guided scheduling (Cont’d)
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Intuition behind feedback-guided scheduling (Cont’d)
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Q: Where does the difference come from?
A: Mainly comes from inter-node optimizations in downstream tools, 
such as logic synthesis.
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XLS delay estimation study

● Design: 6912 different design points of a 
4-ways 24-bits floating-point adder

● Technology: SkyWater 130nm (SKY130)
● Evaluation: Yosys synthesis + OpenSTA

● Root mean square error (RMSE): 3478.0



Original pipeline scheduling in XLS
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SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
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https://ieeexplore.ieee.org/document/1688836


SDC reformulation with feedbacks

SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
Delay_1_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_1 >= 1
Delay_2_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_2 >= 1

… …
(for each path longer than 10ns)

Variables:
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… …
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⇒ Better results

https://ieeexplore.ieee.org/document/1688836


Automated iterative SDC scheduling
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Subgraph Selection Strategy Studies



Delay-driven path extraction

● Design: 4-ways 24-bits floating-point adder
● Technology: SkyWater 130nm (SKY130)
● Clock period: 2500ps (400MHz)

● Settings: 4 (blue)/8 (orange)/16 (green) longest 
paths per iteration

● After 30 iterations,  16-paths strategy reduces 
register number to 550 (-32.8% compared to the 
original SDC scheduling in XLS)

Path: a chain of nodes from register to register



Fanout-driven path extraction
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Fanout-driven path extraction (Cont’d)
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Fanout-driven path extraction (Cont’d)
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Fanout-driven strategy: Target node bitcount/fanout, delay as tie breaker



Fanout-driven path extraction (Cont’d)

● Settings: 4/8/16 delay-driven (dash)/fanout-driven (solid) paths per iteration
● After 30 iterations,  fanout-driven strategy reduces register number to 509 (-37.9%)

Fanout-driven path extraction vs. Delay-driven path extraction



Cone or window extraction
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Cone or window extraction (Cont’d)

● Settings: 4/8/16 fanout-driven path (dash)/cone (dot)/window (solid) per iteration
● After 30 iterations,  window-based strategy reduces register number to 474 (-42.1%)

(Fanout-driven) Path extraction vs. Cone extraction vs. Window extraction



Timing constraints study

● Clock period:
○ 2500ps (400MHz, solid)
○ 3333ps (300MHz, dot)
○ 5000ps (200MHz, dash)

● Settings: 4 (blue)/8 (orange)/ 
16 (green) fanout-driven 
windows per iteration



Evaluation



Full results



Estimation error comparison

● Original XLS estimation (w/o feedback) 
and our estimation (w/ feedback) are 
compared with the post-synthesis STA 
result in each iteration

● After 15 iterations, the geometric mean 
error is reduce to 3.4% with our approach



And-Inverter-Graph (AIG) depth study

● Proprietary tools are time-consuming and 
expensive

● AIG is a view of circuit design widely used 
in logic synthesis tools

● AIG depth could be used for iterative 
optimization due to its linear correlation 
with STA delay



Conclusion

● We propose an feedback-guided iterative SDC scheduling method in XLS, 
which can take feedbacks from downstream tools, e.g., OpenROAD, and 
refine the scheduling result in an iterative way.

● Based on our evaluation of 17 XLS benchmarks, the new method can reduce 
28.5% registers in average compared to the original SDC algorithm.

● The code has been open-source at: https://github.com/google/xls.

https://github.com/google/xls
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