
Subgraph Extraction-based Feedback-guided
Iterative Scheduling For HLS

Hanchen Ye1, David Z. Pan2, Chris Leary3, Deming Chen1, and Xiaoqing Xu4

1University of Illinois at Urbana-Champaign; 2University of Texas at Austin;
3Google; 4X, the moonshot factory

March 25, 2024

Background and Motivation

XLS: Accelerated HW Synthesis

● Takes high-level algorithmic description as input
○ C++ with customized compiler directives
○ DSLX, XLS domain-specific language

● Code optimizations
○ Constant Propagation
○ Dead-code elimination
○ Strength reduction
○ … …

● Generates Verilog as output
○ Pipeline scheduling (e.g., SDC scheduling [1])
○ Verilog code-generation

● Verification utilities
○ Functional simulation (with LLVM JIT [2])
○ Full-stack fuzzing
○ Logical equivalence check (with Z3 [3])

1.An efficient and versatile scheduling algorithm based on SDC formulation (paper)
2.JIT: Just-in-time compilation (wiki)
3.Z3: A satisfiability modulo theories (SMT) theorem prover (github)

https://ieeexplore.ieee.org/document/1688836
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/Z3Prover/z3

XLS: Accelerated HW Synthesis (Cont’d)

Behavioral Model
(e.g., C/C++)

RTL Design
(e.g., Verilog)

🤯RTL
Designer

RTL Design Flow

XLS Design
(DSLX or C/C++)

RTL Design
(e.g., Verilog)

😎
XLS

Designer

XLS Design Flow

● Manual optimization and scheduling
● Long design cycle
● Low portability against different PDK or

PPA requirements

● Automated optimization and scheduling
● Short design cycle
● High portability against different PDK or

PPA requirements

English
Specification

Design
Objectives &
Constraints

Power
Performance
Area (PPA)

Automated feedback-directed optimization (FDO)

English
Specification

Behavioral Model
(e.g., C/C++)

RTL Design
(e.g., Verilog)

Design
Objectives &
Constraints🤯

Power
Performance
Area (PPA)

RTL
Designer

XLS Design
(DSLX or C/C++)

RTL Design
(e.g., Verilog)

😎
XLS

Designer

Logic Synthesis,
Place & Route,

… …

Timing Closure,
PPA Closure,

… …

Logic Synthesis,
Place & Route,

… …

Timing Closure,
PPA Closure,

… …

Automated
Feedback

(congestion,
timing, etc)

Manual
Feedback

Incomprehensive

Feedback-guided
Iterative SDC Scheduling

What is pipeline scheduling?

[7:0]

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Pipeline Scheduling in XLS
Target Clock Period: 10ns
Objective: Minimize register number

Scheduled
XLS Graph

[7:0]

[7:0] [7:0]

[7:0]

[7:0]

2nd Cycle1st Cycle

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C
Unscheduled

XLS Graph
[7:0]

[7:0]

[7:0]

Intuition behind feedback-guided scheduling
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

Subgraph G

Scheduled
XLS Graph

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]

Intuition behind feedback-guided scheduling (Cont’d)
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

With feedback (e.g., OpenROAD): DelayG = 7ns

Refined
XLS Graph

[7:0]

[7:0]

[7:0]

[7:0]

Subgraph G
(7ns) [7:0]

[7:0]

Intuition behind feedback-guided scheduling (Cont’d)
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Without feedback: DelayG = 9ns

With feedback (e.g., OpenROAD): DelayG = 7ns

Refined
XLS Graph

Q: Where does the difference come from?
A: Mainly comes from inter-node optimizations in downstream tools,
such as logic synthesis.

[7:0]

[7:0]

[7:0]

[7:0]

[7:0]Subgraph G
(7ns) 8 registers are reduced

XLS delay estimation study

● Design: 6912 different design points of a
4-ways 24-bits floating-point adder

● Technology: SkyWater 130nm (SKY130)
● Evaluation: Yosys synthesis + OpenSTA

● Root mean square error (RMSE): 3478.0

Original pipeline scheduling in XLS
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Unscheduled
XLS Graph

SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
Delay_1_8 = 12ns > 10ns ⇒ cycle_8 - cycle_1 >= 1
Delay_2_8 = 12ns > 10ns ⇒ cycle_8 - cycle_2 >= 1

… …
(for each path longer than 10ns)

Variables:
cycle_1
cycle_2

… …
cycle_9

Minimize
Register Number

Linear Programming
Problem

Def-use Constraints, Resource Constraints, etc.

https://ieeexplore.ieee.org/document/1688836

SDC reformulation with feedbacks

SDC (System of Difference Constraints) Scheduling [1]

1. An efficient and versatile scheduling algorithm based on SDC formulation (paper)

Timing Constraints:
Delay_1_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_1 >= 1
Delay_2_8 <= 7ns + 3ns ⇒ cycle_8 - cycle_2 >= 1

… …
(for each path longer than 10ns)

Variables:
cycle_1
cycle_2

… …
cycle_9

Minimize
Register Number

Linear Programming
Problem

Def-use Constraints, Resource Constraints, etc.

Subgraph G
(7ns)

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Unscheduled
XLS Graph

Accurate feedbacks
⇒ Less constraints
⇒ Larger search space
⇒ Better results

https://ieeexplore.ieee.org/document/1688836

Automated iterative SDC scheduling

All-paths Delay
Recalculation

Downstream
Tools

OpenROAD
Proprietary Tools

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

SDC
Reformulation

N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

N4
6ns

N5
5ns

N1
3ns

N2
3ns

Subgraph
Extraction

Subgraph g
(7ns)

Iterative SDC
Scheduling

Critical to avoid
combinatorial
explosion

Subgraph Selection Strategy Studies

Delay-driven path extraction

● Design: 4-ways 24-bits floating-point adder
● Technology: SkyWater 130nm (SKY130)
● Clock period: 2500ps (400MHz)

● Settings: 4 (blue)/8 (orange)/16 (green) longest
paths per iteration

● After 30 iterations, 16-paths strategy reduces
register number to 550 (-32.8% compared to the
original SDC scheduling in XLS)

Path: a chain of nodes from register to register

Fanout-driven path extraction
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Scheduled
XLS Graph

1

● Path ❶
○ Delay: 10ns
○ Target node fanout: 2

Fanout-driven path extraction (Cont’d)
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Scheduled
XLS Graph

1

● Path ❶
○ Delay: 10ns
○ Target node fanout: 2

❌

Fanout-driven path extraction (Cont’d)
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Scheduled
XLS Graph

1

2

● Path ❷
○ Delay: 9ns
○ Target node fanout: 1

✔

● Path ❶
○ Delay: 10ns
○ Target node fanout: 2

❌

Fanout-driven strategy: Target node bitcount/fanout, delay as tie breaker

Fanout-driven path extraction (Cont’d)

● Settings: 4/8/16 delay-driven (dash)/fanout-driven (solid) paths per iteration
● After 30 iterations, fanout-driven strategy reduces register number to 509 (-37.9%)

Fanout-driven path extraction vs. Delay-driven path extraction

Cone or window extraction
N3
7ns

N4
6ns

N5
5ns

N6
3ns

N7
3ns

N8
3ns

N9
5ns

N1
3ns

N2
3ns

A

B C

Target Clock Period: 10ns

Scheduled
XLS Graph

2

N3
7ns

N5
5ns

N1
3ns

N3
7ns

N5
5ns

N3
7ns

N4
6ns

N2
3ns

N4
6ns

N1
3ns

N2
3ns

N4
6ns

N5
5ns

N1
3ns

N2
3ns

Path extraction Cone extraction
Multi-inputs single-output

Window extraction
Multi-inputs multi-outputs

Capture more inter-node
optimizations

Cone or window extraction (Cont’d)

● Settings: 4/8/16 fanout-driven path (dash)/cone (dot)/window (solid) per iteration
● After 30 iterations, window-based strategy reduces register number to 474 (-42.1%)

(Fanout-driven) Path extraction vs. Cone extraction vs. Window extraction

Timing constraints study

● Clock period:
○ 2500ps (400MHz, solid)
○ 3333ps (300MHz, dot)
○ 5000ps (200MHz, dash)

● Settings: 4 (blue)/8 (orange)/
16 (green) fanout-driven
windows per iteration

Evaluation

Full results

Estimation error comparison

● Original XLS estimation (w/o feedback)
and our estimation (w/ feedback) are
compared with the post-synthesis STA
result in each iteration

● After 15 iterations, the geometric mean
error is reduce to 3.4% with our approach

And-Inverter-Graph (AIG) depth study

● Proprietary tools are time-consuming and
expensive

● AIG is a view of circuit design widely used
in logic synthesis tools

● AIG depth could be used for iterative
optimization due to its linear correlation
with STA delay

Conclusion

● We propose an feedback-guided iterative SDC scheduling method in XLS,
which can take feedbacks from downstream tools, e.g., OpenROAD, and
refine the scheduling result in an iterative way.

● Based on our evaluation of 17 XLS benchmarks, the new method can reduce
28.5% registers in average compared to the original SDC algorithm.

● The code has been open-source at: https://github.com/google/xls.

https://github.com/google/xls

Thanks for listening!
Q&A

