
Subgraph Extraction-based Feedback-guided Iterative
Scheduling for HLS

Hanchen Ye∗¶, David Z. Pan†§, Chris Leary‡, Deming Chen∗, Xiaoqing Xu§
∗University of Illinois Urbana-Champaign, †The University of Texas at Austin, ‡Google, §X, the moonshot factory

hanchen8@illinois.edu, dpan@ece.utexas.edu, leary@google.com, dchen@illinois.edu, xiaoqingxu@x.team

Abstract—This paper proposes ISDC, a novel feedback-guided
iterative system of difference constraints (SDC) scheduling algo-
rithm for high-level synthesis (HLS). ISDC leverages subgraph
extraction-based low-level feedback from downstream tools like
logic synthesizers to iteratively refine HLS scheduling. Technical
innovations include: (1) An enhanced SDC formulation that effec-
tively integrates low-level feedback into the linear-programming
(LP) problem; (2) A fanout and window-based subgraph extrac-
tion mechanism driving the feedback cycle; (3) A no-human-in-
loop ISDC flow compatible with a wide range of downstream
tools and process design kits (PDKs). Evaluation shows that ISDC
reduces register usage by 28.5% against an industrial-strength
open-source HLS tool.

I. INTRODUCTION

Scheduling is one of the most important problems in high-
level synthesis (HLS) that partitions a computation graph into
multiple clock cycles under the given timing and resource
constraints. In 2006, Cong and Zhang [1] proposed a scheduling
algorithm based on a system of difference constraints (SDC)
formulation, converting the scheduling problem into a linear
programming (LP) problem that can be solved optimally in
polynomial time. SDC scheduling marked an important mile-
stone for HLS and has been widely adopted in HLS tools,
including AMD Vitis HLS [2], LegUp [3], and Google XLS [4].

Over the years, both industrial and academic HLS tools [2]–
[4] have been relying on high-level intermediate representation
(IR), such as LLVM IR [5], for timing analysis, area/resource
analysis, and scheduling. In this context, the IR operations,
such as integer additions and multiplications, are viewed as
the fundamental elements to schedule against. Their delays and
resources are pre-characterized in isolation through downstream
tools, such as logic synthesizer [6], [7], for the target tech-
nology library. While this can capture some low-level char-
acteristics of individual operations, it does not model further
optimizations in downstream tools, such as logic resubstitution
and rewriting, leading to estimations that are substantially
different from the actual quality of results (QoR) [8].

To study this phenomenon, we generated 6912 different de-
sign points of an HLS design with Google XLS [4] and profiled
their post-synthesis static timing analysis (STA) and XLS-
estimated critical path delays. We used Yosys [6] and Open-
STA [9] for logic synthesis and STA. We used SKY130 [10] as
the target technology library. Fig. 1 shows the profiling results.
We can observe the XLS-estimated delays (blue dots) exhibit
significant deviation from the STA delays (the green line),

¶Work was done when interning at X, the moonshot factory.

Fig. 1: Post-synthesis STA vs. XLS-estimated critical path
delay of 6912 different HLS design points.

which are treated as the ground truth for this experiment. These
deviations create unused slack and present numerous opportu-
nities to refine scheduling quality, such as reducing register
usage. However, without access to low-level information, HLS
tools cannot effectively capitalize on these opportunities.

Feedback-directed optimization (FDO) has been widely
adopted in software compilation and shown significant bene-
fits [11]. However, this idea has not been thoroughly studied
in the HLS domain. Lucas et al. [12] presented a process
variation and layout-aware HLS binding algorithm, which
aimed to improve the performance yield of generated designs
by enhancing the HLS binding process. Zheng et al. [13]
introduced a placement and routing (PAR) directed HLS flow,
which heavily depends on back annotations from a specific
proprietary synthesis and PAR tool, limiting its adaptability to
other scenarios. Tan et al. [14] presented a mixed integer linear
programming (MILP) formulation for technology mapping-
aware HLS scheduling. While it considers the mapping of
original operations into look-up tables (LUTs), it cannot capture
inter-operation optimizations present in logic synthesis and
beyond. Rizzi et al. [15] introduced an iterative technology
mapping-aware register placement algorithm. Nonetheless, its
focus remains primarily on the LUT-mapping of FPGA targets
and dynamically scheduled dataflow circuits.

In this paper, we introduce low-level feedback into the HLS
scheduling problem and propose ISDC, a novel iterative SDC
scheduling method. The main contributions are:



Fig. 2: Overall flow of ISDC scheduling algorithm.

• A scheduling algorithm that leverages feedback from
downstream tools to refine the scheduling result iteratively
and reduce register usage.

• An enhanced SDC formulation that effectively integrates
low-level feedback into the LP problem.

• A fanout-driven and window-based subgraph extraction
method that improves the quality and convergence speed
of iterative scheduling.

• A no-human-in-loop ISDC workflow compatible with a
wide range of downstream tools and PDK. ISDC is fully
open-sourced at https://github.com/google/xls.

II. PRELIMINARIES

The HLS IR to be scheduled is typically represented as a
directed graph G. For each operation node v in graph G, SDC
scheduling [1] defines a variable sv to represent the time step in
which the operation is scheduled into. By ensuring constraints
in integer-difference form, such as:

su − sv ≤ du,v (1)

where du,v is an integer, a totally unimodular constraint matrix
is derived, which is guaranteed to have integral solutions [16].
A set of common HLS constraints can be expressed in the form
of integer-difference constraints [16]. Specifically, to meet the
target clock frequency, a timing constraint is used to constrain
the maximum combinational delay within a clock cycle. For the
critical combinational path (CCP) connecting vi1 and vik with
the largest delay, we can calculate its delay D(ccp(vi1 , vik)) as∑k

s=1 d(vis), where d(v) is the individual delay of v. For each
operation pair vi and vj with D(ccp(vi, vj)) > Tclk, where
Tclk is the target clock period, we construct a constraint as:

svi − svj ≤ −
(⌈

D(ccp(vi, vj))

Tclk

⌉
− 1

)
(2)

Eq. 2 states that the combinational path with total delay
exceeding the target clock period Tclk must be partitioned into
at least dD(ccp(vi, vj))/Tclke number of clock cycles.

III. ITERATIVE SDC SCHEDULING

A. Overall Flow

Fig. 2 shows the overall flow of the proposed ISDC schedul-
ing algorithm. ISDC starts from an initial pipeline, as depicted
in Fig. 2(a), scheduled with the original SDC scheduling
algorithm [1]. Note that each node in Fig. 2(a) represents an
operation of the HLS IR, such as integer additions and multipli-
cations. On top of this initial schedule, a set of combinational
subgraphs, such as subgraph g at the lower-left of Fig. 2, are
extracted and passed to downstream tools for subgraph logic
synthesis and beyond. Subsequently, the subgraph delays fed
back from downstream tools are integrated into an enhanced
SDC formulation to construct an updated LP problem. Upon
solving this LP problem, a new pipeline schedule is generated
as depicted in Fig 2(b). This procedure is then iteratively
applied to the new pipeline schedule until a stable scheduling
result is achieved, exemplified by metrics such as register usage.

1) Why low-level feedback helps: As shown in Fig. 2(a), the
initial estimation of D(ccp(v2, v8)) is calculated as d(v2) +
d(v4) + d(v8), which totals to 12ns. Given the target clock
period of 10ns, v2 and v8 must be scheduled into separate clock
cycles. However, suppose the delay of subgraph g reported by
downstream tools is 7ns, D(ccp(v2, v8)) can be recalculated as
D(g) + d(v8), equaling to 10ns. As a result, v8 can now be
merged into the same clock cycle as v2, leading to a decrease
in register usage as depicted in Fig. 2(b). This underscores the
significance of low-level feedback in refining scheduling result.
Such feedback empowers ISDC to identify better design points
that might have been erroneously overlooked by the original
SDC scheduling algorithm.

2) Why an iterative approach helps: Considering the real-
world constraints of computational resources, it is infeasible
to evaluate every subgraph in an HLS design for feedback,
especially given the exponential increase in complexity as the
HLS design grows. By using an iterative approach, ISDC can
capitalize on knowledge from prior iterations, substantially
reducing the search space of subgraph extraction by focusing

https://github.com/google/xls


Fig. 3: Delay-based vs. fanout-based subgraph extraction.

Fig. 4: Cone-based vs. window-based subgraph extraction.

on combinational subgraphs from the previous schedule. This
approach helps ISDC incrementally refine the scheduling result,
maintaining manageable computational complexity throughout
each iteration.

B. Subgraph Extraction Strategy

Despite using an iterative approach, the number of subgraph
candidates remains vast, which can readily result in slow
convergence. In this section, we introduce two orthogonal
strategies to address this problem. Their ablation studies are
presented in Section IV-A.

1) Fanout-driven strategy: A direct and intuitive extraction
strategy is delay-driven: focusing on the longest paths from the
previous schedule because of their impact on the achievable
clock frequency. Nonetheless, we argue that relying solely on
delay is not the most effective strategy. As illustrated in Fig. 3,
path 1 is the longest combinational path with a delay of 10ns.
But the register associated with path 1 , specifically r3, is
utilized by two consumer nodes, v6 and v7. Merging the two
nodes into the first clock cycle would increase register usage,
being not beneficial. In comparison, although path 2 has a
shorter delay of 9ns, its associated register r4 only has a single
consumer, offering greater flexibility in its positioning.

Essentially, the more a register is being utilized, the more
critical it becomes, reducing the benefit of repositioning it.
Therefore, we introduce the following metric to drive the
subgraph extraction process:

S(vi, vj) =

k∑
s=1

bit count(rs(vj)) +
D(ccp(vi,vj))

Tclk

num users(rs(vj)) + 1
(3)

Assuming vj produces a total of k results, rs(vj) denotes
the s-th result of vj . The function bit count quantifies the
significance of rs(vj), while num users captures the degree
to which rs(vj) is utilized. D(ccp(vi, vj))/Tclk serves as a
tie-breaker, and is ensured to be less than 1.0 in any valid
schedule. Suppose m subgraphs are extracted in each iteration,
ISDC sorts all combinational paths from the previous schedule
in descending order of S(vi, vj) and extract the top m paths.
Given that num users can be viewed as the HLS IR level
fanout, we term this approach the fanout-driven strategy.

Algorithm 1 Pseudo code of delay updating

Require: G, the graph to be scheduled
Require: S[m], all evaluated subgraphs
Require: D[n][n], the past critical path delay of all node pairs
Ensure: Updated D[n][n], the critical path delay of all node pairs

1: if is first iteration() then . Initialize D
2: for u in get nodes(G) do
3: for v in get nodes(G) do
4: if u == v then
5: D[u][v]← d(v) . Get individual delay
6: else if is connected(u, v) then
7: D[u][v]← D(ccp(u, v)) . Get critical path delay
8: else
9: D[u][v]← −1 . Annotate as not connected

10: for g in S do . Traverse all evaluated subgraphs
11: for u in get nodes(g) do
12: for v in get nodes(g) do
13: if D[u][v] > get delay(g) and D[u][v] 6= −1 then
14: D[u][v]← get delay(g) . Update critical delay

2) Window-based strategy: The motivation of introducing
feedback is to capture the low-level optimizations in down-
stream tools. To better capture inter-node optimizations, ISDC
expands the paths identified in Section III-B1 to cones and
windows. Here, a cone is defined as a set of nodes at the HLS
IR level with multiple input nodes (leaves) and a single output
node (root). A cone must adhere to the following properties:
(1) Each path from any primary input (PI) of graph G to root
passes though a leaf; (2) For each leaf, there exists a path from
a PI to root that passes though that specific leaf and bypasses
any other leaves. To expand a given path between nodes vi and
vj into a combinational cone, ISDC uses a depth-first search
(DFS) algorithm that recursively identifies the preceding nodes
of vj until it encounters the boundary nodes of clock cycles or
the PI of the entire graph G.

A window is derived by merging multiple cones that have
different roots but share an identical or overlapping set of
leaves. While a window still adheres to the properties above,
it extends them to the case of multiple output nodes. Fig. 4
shows an example of expanding path 2 in Fig. 3 to a
cone (subgraph 3 ) and a window (subgraph 4 ). Given that
cone/window-based optimizations are prevalent in logic synthe-
sis [7], the cone/window subgraphs can capture the most rele-
vant inter-operation optimizations, while also being sufficiently
self-contained to mitigate the potential of over-optimization.

C. Delay Updating
In the initial SDC scheduling phase, ISDC employs the

method outlined in Section II to calculate the critical path delay
for every node pair and set timing constraints. To integrate
the low-level feedback into the subsequent SDC formulations,
ISDC maintains a matrix D[n][n] that holds the estimated
critical path delay of all node pairs, where n denotes the total
node count. In each iteration, ISDC updates D[n][n] with Alg. 1
once the subgraph delays are fed back from downstream tools.
Lines 1 to 9 initialize D[n][n] with the naive delay estimations.
Subsequently, lines 10 to 14 traverse all evaluated subgraphs.
For each subgraph g, the delay of all node pairs covered by g is
updated with D(g), but only if D(g) is shorter than the original



Algorithm 2 Pseudo code of SDC reformulation

Require: G, the graph to be scheduled
Require: Tclk, target clock period
Require: Updated D[n][n], the critical path delay of all node pairs
Ensure: M , the reformulated SDC model

1: V ← get nodes(G)
2: for v in topo sort(V ) do
3: Dv[n]← new([−1]× n)
4: for p in get operands(v) do . Traverse all operands of v
5: for u in V do
6: if D[u][p] 6= −1 then
7: if Dv[u] < D[u][p] +D[v][v] then
8: Dv[u]← D[u][p] +D[v][v]

9: for u in V do
10: if Dv[n] 6= −1 then
11: if D[u][v] > Dv[n] or D[u][v] == −1 then
12: D[u][v]← Dv[n] . Update critical path delay
13: for u in reverse topo sort(V ) do
14: Du[n]← new([−1]× n)
15: for c in get users(u) do . Traverse all users of u
16: ... ... . Reversed delay propagation
17: M ← initialize sdc(V )
18: for u in V do
19: for v in V do
20: if D[u][v] > Tclk then
21: add timing constraint(M ) . Set Eq. 2 to M

22: add other constraint(M )

delay estimation. Consequently, ISDC maximally leverages the
information obtained from each subgraph evaluation, thereby
accelerating the iterative convergence.

D. SDC Reformulation

Upon the updated delay matrix D[n][n], all the timing
constraints discussed in Section II are reformulated to construct
an updated LP problem. Essentially, this reformulation can
be viewed as an all-pairs shortest path problem, optimally
solved by Floyd-Warshall algorithm with a complexity of
O(n3). To mitigate this cubic complexity, we propose an O(n2)
algorithm as Alg. 2, which provides a sufficiently accurate
delay estimation for our purposes. The estimation accuracy
study is presented in Section IV-B. Lines 2 to 12 traverse all
nodes of graph G in a topological order, ensuring that a node
is processed only after all its operand nodes. For a specific
node v, lines 4 to 8 calculate the delay from all nodes to v by
adding v’s individual delay to the delay from all nodes to v’s
operand nodes. Lines 7 to 8 ensure only the critical path delay
is recorded. Subsequently, lines 9 to 12 update D[n][n] only if
the newly calculated delay is shorter.

After this topological order traversal, lines 13 to 16 of Alg. 2
reprocess all nodes, but in a reversed topological order. This
step aims to identify the complementary paths that cannot be
identified by the initial topological order traversal. Finally, lines
18 to 21 set the timing constraints for the LP problem based on
the recalculated D[n][n]. Intuitively, by reformulating the SDC
problem, ISDC prunes the over-conservative timing constraints
that were erroneously set in the previous SDC scheduling.
This enlarges the updated LP problem’s search space, naturally
leading to a refined scheduling result.

IV. EVALUATION

We implemented the proposed ISDC algorithm on top of
an industrial-strength open-source HLS tool, Google XLS [4],
which uses SDC scheduling [1] as the default scheduling
algorithm. We used Yosys [6] and OpenSTA [9] for logic
synthesis and STA. We used open-source SKY130 [10] as the
target technology library.

A. Ablation Study

We performed a set of ablation studies on an XLS-based
HLS design to demonstrate the efficacy of the proposed fanout-
driven and window-based subgraph extraction strategy.

1) Fanout-driven strategy: Fig. 5 shows the comparisons
between the delay-driven (dd) and fanout-driven (fd) strategies.
We performed 30 iterations of scheduling under 400MHz clock
frequency, where 4, 8, or 16 subgraphs were extracted per
iteration. The results indicate that the fanout-driven strategy
converges notably faster than its delay-driven counterpart, par-
ticularly in the initial iterations. Furthermore, it consistently
achieves lower register usage across all three cases.

2) Window-based strategy: Fig. 6 shows the comparisons
among the path, cone, and window-based strategies. Notably,
the cone/window-based strategies demonstrate faster conver-
gence than the path-based approach, achieving a reduced regis-
ter usage. Path-based strategy is often trapped in local minima.
In contrast, the cone/window-based strategy can overcome
those points, achieving further improvements in subsequent
iterations. While the cone and window-based strategies exhibit
similar performance, the results suggest a slight edge for
the window-based approach. Meanwhile, as expected, ISDC
converges faster with the extraction and evaluation of more
subgraphs per iteration.

B. Benchmarking Results

We performed benchmarking on 17 XLS-based HLS designs
to evaluate ISDC. The benchmarks encompass common algo-
rithms like crc32, as well as datapaths from industrial SoCs,
including an machine learning processor (ML-core) and a video
processor (video-core). In the evaluation, we used the fanout-
driven and window-based strategy, evaluating 16 subgraphs per
iteration in parallel. A total of 15 iterations were performed on
each benchmark. Tab. I shows the evaluation results, including
metrics such as the target clock period, post-synthesis slack,
number of pipeline stages, number of registers, and scheduling
runtime. By default, we set the target clock period to 2500ps
to constrain the scheduling. If an operation in a benchmark
exhibited an individual delay exceeding 2500ps, we adjusted
the target clock period to 5000ps. On average, ISDC achieves
a 28.5% lower register usage compared to the original SDC
scheduling. This comes at the cost of an average 40.8× increase
in scheduling runtime. For instance, for the largest benchmark,
sha256, ISDC spends around 54.7 minutes to converge, which
is 11.5× longer than the original SDC’s 4.7 minutes. Among all
benchmarks, ISDC utilized 39.1% additional slack in average
to make room for the reduction in register usage. However,
there are several counter examples, such as ML-core datapath0



(a) 4 subgraphs per iteration. (b) 8 subgraphs per iteration. (c) 16 subgraphs per iteration.

Fig. 5: Ablation study of delay-driven and fanout-driven subgraph extraction. Path-based strategy is used.

(a) 4 subgraphs per iteration. (b) 8 subgraphs per iteration. (c) 16 subgraphs per iteration.

Fig. 6: Ablation study of path, cone, and window-based subgraph extraction. Fanout-driven strategy is used because it has
produced better results than the delay-driven strategy as shown in Fig. 5.

Fig. 7: Delay estimation accuracy comparison.

opcode0, which exhibits a slight increase in slack but still
achieves a register usage reduction.

To evaluate ISDC’s delay estimation accuracy, we analyzed
its estimation across the 17 benchmarks and compared with
the original SDC. Fig. 7 shows the comparison results. In
the first iteration, without low-level feedback, ISDC exhibits
the same estimation error as the original SDC. However, as
the iterations progress, ISDC gradually reduces its estimation
error, ultimately reaching an error of 3.4%. In contrast, the

original SDC’s estimation error increases. We attribute this to
the fact that as the scheduling results are refined, more low-
level optimizations are overlooked by the original SDC.

V. DISCUSSION

1) Process node: Though we used real-world benchmarks
for evaluation, we evaluated them down-clocked and on an
older open-source industry process node (SKY130) to pioneer
the methodology. We expect that the improvements should
apply as effectively to more advanced process nodes and
proprietary tools that offer similar STA report facilities.

2) Retiming: Retiming [17] is a method that repositions
registers in gate-level sequential circuits to optimize perfor-
mance or reduce resource usage without altering the overall
functionality. On the other hand, HLS scheduling operates at
higher-level IRs composed with algebraic operations and ex-
plicit control flows. This provides HLS scheduling with greater
flexibility and larger design space to find more optimized
designs. Furthermore, HLS scheduling preserves the algebraic
attributes in the generated circuits, paving the way for robust
verification processes, such as logic equivalence checking. This
mitigates the limitations inherent in the retiming technique.

3) Runtime: A common concern of feedback-guided ap-
proaches is runtime. While the results in Tab. I demonstrate that
ISDC converges at a practical pace, we have also explored a
more aggressive strategy using the and-inverter-graph (AIG) to
guide the scheduling. AIG is a widely adopted representation



TABLE I: Benchmarking results on 17 XLS-based HLS designs.

Benchmark
Clock
Period

(ps)

XLS [4] (SDC Scheduling) Ours (Iterative SDC Scheduling)

Slack
(ps)

Stage
Num.

Register
Num.

Schedule
Time (s)

Slack
(ps)

Stage
Num.

Register
Num.

Schedule
Time (s)

Iteration
Num.

ML-core datapath1 2500 1161.65 2 99 0.14 729.72 1 50 6.73 3
ML-core datapath0 opcode4 5000 943.93 2 109 0.11 943.93 2 109 0.10 1

rrot 2500 866.23 2 192 0.08 499.33 1 96 2.98 2
ML-core datapath0 opcode3 5000 1440.65 3 138 0.13 772.87 2 101 23.90 6

binary divide 2500 518.66 3 71 0.12 436.18 3 70 7.56 4
hsv2rgb 5000 1450.73 3 134 0.11 1149.73 2 102 10.64 3

ML-core datapath0 opcode0 5000 1140.9 3 162 0.12 1162.66 2 108 19.26 4
crc32 2500 1744.35 3 75 0.11 1686.49 1 38 4.76 3

ML-core datapath0 opcode1 5000 1235.58 5 298 0.15 1519.2 4 234 21.28 4
ML-core datapath0 opcode2 5000 1331.25 6 480 0.44 1030.73 3 209 94.30 14

ML-core datapath0 (all opcodes) 5000 1834.68 8 1214 1.62 951.24 5 729 101.61 13
ML-core datapath2 2500 220.14 10 819 0.43 36.71 6 474 27.62 9
float32 fast rsqrt 5000 1202.02 10 1055 1.79 144.91 8 797 118.47 14

video-core datapath 2500 26.86 12 1756 24.28 166.31 12 1732 316.62 11
internal datapath 2500 371.22 26 3095 13.73 60.42 25 2976 167.04 10

sha256 2500 232.66 112 85545 284.47 74.11 97 73990 3280.88 11
fpexp 32 5000 442.75 121 30569 240.90 236.97 114 29242 3441.08 13

Geo. Mean 686.74 6.93 569.86 0.84 418.16 4.85 407.19 34.46
Ratio 100.0% 100.0% 100.0% 100.0% 60.9% 70.0% 71.5% 4080.5%

Fig. 8: Post-synthesis STA vs. ABC [7] AIG depth of 6912
different HLS design points.

for logic optimizations in tools like ABC [7]. As shown in
Fig. 8, there is a compelling linear correlation between post-
synthesis STA delay and AIG depth within ABC. This suggests
a future research direction of bypassing the time-consuming
technology mapping and post-synthesis STA, and directly using
AIG depth as feedback.

4) Simultaneous HLS and logic optimization: In ISDC, we
consciously bypass the back annotation technique used in [13],
[15] due to its backend-specific nature and lack of generalizabil-
ity. However, to squeeze out the extra bit of performance from
digital circuits in the post-Dennard-scaling era, it is possible to
blur the lines between HLS and downstream processes, such as
logic synthesis. Future endeavors might see a co-optimization
of the two design spaces, such as simultaneous HLS scheduling
and logic optimization.

VI. CONCLUSION

In this paper, we proposed ISDC, a feedback-guided iterative
scheduling algorithm for HLS. Building upon the traditional
SDC approach, ISDC integrates iterative refinements and down-
stream tool feedback, showing a notable reduction in register
usage. ISDC offers insights into feedback-guided optimization
for HLS and highlights avenues for future exploration.

REFERENCES

[1] J. Cong et al., “An efficient and versatile scheduling algorithm based on
SDC formulation,” in Proc. of DAC, 2006.

[2] Advanced Micro Devices Inc, Vitis High-Level Synthesis User Guide
UG1399 (v2022.2), 2022.

[3] Microchip Technology Inc, LegUp 2021.1 Documentation, 2021.
[4] The XLS Authors, “XLS: Accelerated HW synthesis,” https://github.com/

google/xls, 2023, accessed on: 2023-09-17.
[5] C. Lattner et al., “LLVM: A compilation framework for lifelong program

analysis & transformation,” in Proc. of CGO, 2004.
[6] C. Wolf, “Yosys open synthesis suite,” 2016.
[7] R. Brayton et al., “ABC: An academic industrial-strength verification

tool,” in Proc. of CAV, 2010.
[8] S. Dai et al., “Fast and accurate estimation of quality of results in high-

level synthesis with machine learning,” in Proc. of FCCM, 2018.
[9] The OpenSTA Authors, “OpenSTA: Parallax static timing analyzer,”

https://github.com/parallaxsw/OpenSTA, 2023, accessed on: 2023-09-17.
[10] The SkyWater PDK Authors, “SkyWater open source PDK,” https:

//github.com/google/skywater-pdk, 2023, accessed on: 2023-09-17.
[11] D. Chen et al., “AutoFDO: Automatic feedback-directed optimization for

warehouse-scale applications,” in Proc. of CGO, 2016.
[12] G. Lucas et al., “FastYield: Variation-aware, layout-driven simultaneous

binding and module selection for performance yield optimization,” in
Proc. of ASPDAC, 2009.

[13] H. Zheng et al., “Fast and effective placement and routing directed high-
level synthesis for FPGAs,” in Proc. of FPGA, 2014.

[14] M. Tan et al., “Mapping-aware constrained scheduling for LUT-based
FPGAs,” in Proc. of FPGA, 2015.

[15] C. Rizzi et al., “An iterative method for mapping-aware frequency
regulation in dataflow circuits,” in Proc. of DAC, 2023.

[16] Z. Zhang et al., “SDC-based modulo scheduling for pipeline synthesis,”
in Proc. of ICCAD, 2013.

[17] C. E. Leiserson et al., “Retiming synchronous circuitry,” Algorithmica,
1991.

https://github.com/google/xls
https://github.com/google/xls
https://github.com/parallaxsw/OpenSTA
https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk

	Introduction
	Preliminaries
	Iterative SDC Scheduling
	Overall Flow
	Why low-level feedback helps
	Why an iterative approach helps

	Subgraph Extraction Strategy
	Fanout-driven strategy
	Window-based strategy

	Delay Updating
	SDC Reformulation

	Evaluation
	Ablation Study
	Fanout-driven strategy
	Window-based strategy

	Benchmarking Results

	Discussion
	Process node
	Retiming
	Runtime
	Simultaneous HLS and logic optimization


	Conclusion
	References

