
HIDA: A Hierarchical Dataflow 
Compiler for High-Level Synthesis

Hanchen Ye, Hyegang Jun, Deming Chen
University of Illinois Urbana-Champaign

Apr. 29, 2024



Background
Why dataflow architecture?



What is dataflow architecture?

• Dataflow architectures
Time

Process
Element 0

Process
Element 1

Process
Element 2

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2



What is dataflow architecture? (Cont.)

• Dataflow architectures
Time

Process
Element 0

Process
Element 1

Process
Element 2

External Memory

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2



What is dataflow architecture? (Cont.)

• Dataflow architectures
Time

Process
Element 0

Process
Element 1

Process
Element 2

External Memory

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2



What is dataflow architecture? (Cont.)

• Dataflow architectures
Time

Process
Element 0

Process
Element 1

Process
Element 2

External Memory

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2



What is dataflow architecture? (Cont.)

• Dataflow architectures
Time

Process
Element 0

Process
Element 1

Process
Element 2

External Memory

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2



What is dataflow architecture? (Cont.)

• Dataflow architectures
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• Keep intermediate data on chip – reduce external memory access
• Overlap task execution – reduce latency and on-chip memory utilization
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• Dataflow designs are Pareto 
dominating

• Dataflow cannot guarantee a 
good trade-off

• Dataflow design space is large 
to comprehend

• Automated tool can outperform 
expert design

Why designing dataflow architecture is hard?



Motivation
Why designing dataflow architecture is hard?
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• FPGA, AMD AI Engine, etc.

• … …

Two levels of optimization are at distinct abstraction levels
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• Node0 is connected to Node2 through buffer A
• If buffer A is on-chip, the partition strategy of A 

is HIGHLY correlated with the parallel strategies 
of both Node0 and Node2

• Node1 is connected to Node2 through buffer B
• Same as above

• Node0, 1, and 2 have different trip count: 
32*16, 16*16, and 16*16*16
• To enable efficient pipeline execution of Node0, 

1, and 2, their latencies after parallelization 
should be similar

Connectedness

Intensity

Optimizing kernels separately can lead to poor global performance



HIDA Framework
Hierarchical dataflow representation and optimization
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HIDA framework overview (Cont.)

• PyTorch or C/C++ as input
• Optimized C++ dataflow design as 

output
• MLIR-based dataflow intermediate 

representation (IR), optimization, 
and code-generation



HIDA functional dataflow

• Hierarchical structure
• Support multiple levels of dataflow
• Inside of Task6, the tile load, 

computation, and store are further 
dataflowed

• Transparent from above
• All tasks share the same global 

context
• Support efficient task manipulation

• Carry high-level optimizations



HIDA structural dataflow

• Buffer representation
• Support both ping-pong buffer and 

stream channels

• Isolated from above
• Each node has its own context
• Decouple inter-node and intra-node 

dataflow optimization

• Carry low-level optimizations
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• Buffer inside of the context • Buffer outside of the context

Optimization #1: Multiple producer elimination (Cont.)
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Optimization #2: Data paths balancing

• On-chip balancing • Off-chip balancing



HIDA Design Space Exploration
Dataflow-aware exploration
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∅
1

0.5
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Step (1) Connectedness Analysis

• Permutation Map
• Record the alignment between loops

• Scaling Map
• Record the alignment between strides

• Affine / Linear algebra based
• Demand normalized and perfect loop with 

affine memory access indices



Node Connectedness Intensity

Node0 1 512

Node1 1 256

Node2 2 4096

Step (2) Node Sorting

• Descending Order of Connectedness
• Higher-connectedness node will affect 

more nodes

• Intensity as Tie-breaker
• Higher-intensity nodes are more 

computationally complex, being more 
sensitive to optimization

• Order: Node2 -> Node0 -> Node1

HIDA design space exploration (Cont.)



HIDA design space exploration (Cont.)

• Assuming maximum parallel factor is 32
• Node2 Parallelization: [4, 8, 1]

• Overall parallel factor is 32
• Local DSE without constraints
• Solution unroll factors: [4, 8, 1]

Step (3) Node Parallelization
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• Assuming maximum parallel factor is 32
• Node2 Parallelization: [4, 8, 1]
• Node0 Parallelization: [4, 1]

• Overall parallel factor is 4, calculated from 
intensities of Node0 and 2 (32*512/4096)

• Local DSE with connectedness constraints, 
the unroll factors must NOT be mutually 
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• Multiply with scaling map:
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HIDA design space exploration (Cont.)

• Assuming maximum parallel factor is 32
• Node2 Parallelization: [4, 8, 1]
• Node0 Parallelization: [4, 1]
• Node1 Parallelization: [1, 2]

• Overall parallel factor is 2, calculated from 
intensities of Node0 and 1 (32*256/4096)

• Local DSE with connectedness constraints
• Solution unroll factors: [1, 2]

Step (3) Node Parallelization



HIDA design space exploration (Cont.)

Intensity-aware (IA)
Connectedness-aware (CA)

HIDA DSE

Naive
Local
DSE

8x
8x
1x

Step (3) Node Parallelization



Experimental Results
… on C/C++ and PyTorch benchmarks



ResNet-18 ablation study on HIDA
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• IA+CA parallelization can determine 
whether the solution is scalable



ResNet-18 ablation study on HIDA (Cont.)

(a)

4.5X

(b)

4.7X

(c)

1.0X

• IA+CA parallelization can determine 
whether the solution is scalable

• IA+CA parallelization can significantly 
reduce resource utilization



HIDA results on C++ kernels



HIDA results on DNN models 



Conclusion

• We propose a hierarchical dataflow compilation framework, HIDA, with 
two levels of dataflow representation and optimization
• We propose a connectedness-aware and intensity-aware design space 

exploration method to systematically parallelize dataflow designs
• Experiments show performance improvements for both C++ kernels and 

PyTorch models

Open-sourced on GitHub:
https://github.com/UIUC-ChenLab/ScaleHLS-HIDA

https://github.com/UIUC-ChenLab/ScaleHLS-HIDA
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