
HIDA: Hierarchical Dataflow Compiler for High-Level Synthesis
Hanchen Ye, Hyegang Jun, Deming Chen
University of Illinois at Urbana-Champaign

Motivation HIDA Framework

Task 0 Task 1 Task 2 Task 0 Task 1 Task 2 Task 0 Task 1 Task 2

Time

Process
Element 0

External Memory

Time

Process
Element 0

Process
Element 1

Process
Element 2

External Memory

Task 0 Task 0 Task 0

Task 1 Task 1 Task 1

Task 2 Task 2 Task 2

Non-dataflow Architecture

Dataflow Architecture
• Keep intermediate data on chip – reduce external memory access
• Overlap task execution – reduce on-chip memory utilization

• Dataflow designs are Pareto dominating
• Dataflow designs cannot guarantee a good trade-off

Case Study: An LeNet Accelerator on FPGA

Experimental Results

HIDA Results on DNN Models

HIDA Framework Overview

Functional
Dataflow

Structural
Dataflow

High-level Dataflow 
Optimizations

Low-level Dataflow 
Optimizations

• Tensor & Linear algebra optimizations
• Tiling, fusion, permutation, packing, etc.

• Full tensor reduction
• Reducing full tensor to partial tensors

• Task manipulation
• Placement, scheduling, etc.

• Ping-pong Buffer optimizations
• Placement, partitioning, etc.

• Stream channel optimizations
• Placement, vectorization, sizing, etc.

• Task optimizations
• Pipelining, vectorization, etc.

HIDA Design Space Exploration

0

1
∅

0
2

Step (1) Connectedness Analysis

• Permutation Map - Record the alignment between loops
• Scaling Map - Record the alignment between strides

Node Connectedness Intensity
Node0 1 512
Node1 1 256
Node2 2 4096

Step (2) Node Sorting

• Descending Order of Connectedness
• Computation Intensity as Tie-breaker

• Assuming maximum parallel factor is 32
• Node2 Parallelization: [4, 8, 1]
• Overall parallel factor is 32
• Local DSE without constraints
• Solution unroll factors: [4, 8, 1]

• Node0 Parallelization: [4, 1]
• Overall parallel factor is 4, calculated from 

intensities of Node0 and 2 (32*512/4096)
• Local DSE with connectedness constraints, 

the unroll factors must NOT be mutually 
indivisible with constraints
• Multiply with scaling map:
• [4, 8, 1] ⊙ [2, ∅, 1] = [8, ∅, 1]
• Permute with permutation map:
• permute([8, ∅, 1], [0, 2]) = [8, 1]

• Solution unroll factors: [4, 1]

Step (3) Node Parallelization

(a)

4.5X

(c)

Open-sourced
on GitHub


